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Preface

 

A precise definition of complexity itself has been an 
ongoing debate, and there are many definitions; this 
report briefly compares and contrasts the defini-
tions. It then settles upon algorithmic complexity, 
specifically, Kolmogorov Complexity, as a working 
definition and proceeds to explore the unique para-
digm shift that appears when communication net-
work fault tolerance is viewed through the lens of 
Kolmogorov Complexity. Our application of com-
plexity to communication networking is directed 
toward both the current and next-generation Inter-
net. Many emerging communication network tech-
nologies are discussed in this report such as self-
healing networks, intelligent and predictive net-
works, active networks, predictive network manage-
ment, and information assurance and network 
security technology. However a common thread, 

namely, the role of complexity, emerges to tie 
together these previously disparate technologies in 
new and unique ways. In addition, the application to 
information assurance is an extremely timely topic, 
given Microsoft’s recently announced focus on fix-
ing their product’s security flaws. Recent tragic ter-
rorist events clearly demonstrate that the civilian 
and military internets are vulnerable targets. We 
hope to spark new ideas in multidisciplinary fields; 
we are standing on the shoulders of two giants—the 
communication networking community and the 
founding fathers of algorithmic information the-
ory—while attempting to make the work of both 
communities understandable to each other as well as 
to a general audience in the hope of synthesizing 
new ideas in the minds of all readers. 

—Stephen F. Bush February 03, 2002
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Summary

 

A seminal contribution of this effort was pre-
sented—the development of a complexity-based 
information assurance metric for vulnerability analy-
sis. The metric proposed is Kolmogorov Complexity. 
Advances in computable estimates of Kolmogorov 
Complexity are indicated, as well as additional appli-
cations of Kolmogorov Complexity for fault tolerant 
communications in general. Unless vulnerabilities 
can be identified and measured, the information 
assurance of a system can never be properly 
designed or guaranteed. An underlying definition of 
information security is hypothesized based upon the 
attacker and defender as reasoning entities, capable 
of learning to outwit one another. Estimates of Kol-
mogorov Complexity provide such an objective 
parameter with which to provide information assur-
ance through anomaly detection and objective 
model development. The capability of this metric is 
limited in part by the accuracy of its estimation, 
which must be traded against computational 
expense. The Optimal Symbol Compression Ratio 
Algorithm, used to estimate complexity and sophisti-
cation, provides additional capability to discern 
anomalous behavior in information systems. Further 
research is needed to develop strategies for cost-
effective use of this paradigm across entire systems.

The desirable properties of a metric for security 
are examined (Section 3.3). In order to further the 
development of a realistic metric, a general model 
for studying information assurance is proposed (Sec-
tion 4). Next, a definition of vulnerability is pro-
posed in terms of a new model based on Turing 
Machines (Hypothesis 4.1), and engineered proper-
ties of information assurance with an analogy to 
mechanical engineering are proposed in terms of 
the new model. The analogy with mechanical engi-
neering is called Brittle Systems (Section 5) and 
involves the design of information assurance in a 
manner that accounts for tradeoffs in performance 
and degradation of information assurance in a sys-
tem. Information assurance is also examined from 
the perspective of set theory and a topological space 
(Section 3.5). This is particularly relevant towards 
understanding the operation of the metric with 
regard to secure composition and the inherent lim-
its of applying safeguards to a system.

The advantages and drawbacks of Kolmogorov 
Complexity are discussed, including its incomput-

able nature. However, computable estimates (Sec-
tion 6.2) of Kolmogorov Complexity are explained, 
as well as additional useful applications of Kolmog-
orov Complexity for communications in general. 
These additional applications are important because 
they demonstrate how information assurance is an 
integral part of information system design. Next 
Theorems 6.1 and 6.2 concerning the conservation 
of complexity (Section 6.7) within an information 
system were discussed. This led to a Swarm experi-
ment that monitors the evolution of complexity in a 
dynamic and complex system and examines our abil-
ity to monitor the complexity as it evolves. Unless 
vulnerabilities can be identified and measured, the 
information assurance of a system can never be 
properly designed or guaranteed. Results from a 
study on complexity evolving within an information 
system using Mathematica (Section 9.2), Swarm, and 
a new Java complexity probe toolkit (Section 9.4), 
developed by this project, were presented in this 
report. An underlying definition of information 
security was hypothesized (Hypothesis 9.1) based 
upon the attacker and defender as reasoning enti-
ties, capable of learning to outwit one another. This 
leads to a study of the evolution of complexity in an 
information system and the effects of the environ-
ment upon the evolution of complexity. Under-
standing the evolution of complexity in a system 
enables a better understanding of how to measure 
and quantify the vulnerability of a system. Finally, 
the design of the Java complexity probes toolkit 
under construction for automated measurement of 
information assurance is presented (Section 9.5). A 
dialog is included that contains typical questions 
about the relationship between complexity and 
information assurance. This dialog is best read after 
reading the introduction Kolmogorov Complexity 
(Section 6.1) or for someone already familiar with 
complexity theory who wants a quick overview of the 
approach taken on this project toward the relation-
ship between complexity and information assur-
ance.

Another result of this project is the concept of 
conservation in the evolution of complexity in a sys-
tem and the search for a bound on the change in 
complexity such that abnormal behavior can be 
detected when the bound is exceeded. This work 
demonstrated a promising approach for further 
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exploration into the laws governing complexity and 
the evolution of complexity within a system using 
simulation. Finally, complexity probes were devel-
oped to enhance a security-engineering tool based 
upon an electrical engineering paradigm with com-
plexity as the resistance to insecurity flow.

Blindly applying current communication and 
computation technology on MEMS devices would be 
fighting a losing battle against nature. The proposi-
tion this report hoped to reinforce in the readers' 
mind was that MEMS devices can be more efficiently 
engineered by working with, instead of against, the 
environment in which they are placed. Specifically, 
two approaches were proposed for revolutionary 
gains in MEMS device communication. The first was 
to view all network devices as computational or 
active devices. Computation can take many forms. 
The amount of computation may vary, but every 
device has some type of computation, either pro-
grammed or ambient. Use of computation in an 
optimal manner is the same challenge faced by 
active networks. Thus, advances in active networks 
and networks of MEMS devices are mutually benefi-
cial. The second approach was to optimize networks 

of MEMS devices via exploiting emergence. Under-
standing emergence requires understanding com-
plexity; that relationship was touched upon relative 
to networking in this report. Use of emergence 
shows promise as a means to precisely engineer 
desired characteristics into systems of MEMS devices 
resulting in reduced size by removing unnecessary 
computation and control.

This report shows that a genetic algorithm shows 
sudden decreases in complexity of the population 
between generations as the algorithm evolves in 
response to the fitness function. Lower complexity 
corresponds to greater homogeneity in the popula-
tion and greater fitness to the chosen criterion. Thus 
it can be clearly seen that complexity can be used as 
one indicator of progress in evolution of the genetic 
algorithm. A framework for testing the injection of 
fitness functions into an active network that evolves 
solutions via a genetic programming technique has 
been implemented. Future work involves testing the 
response time to heal and the resiliency of the net-
work in the presence of faults.
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Introduction

 

Complexity is being studied in a myriad of disci-
plines and in many different ways. Measures of com-
plexity have been derived in attempt to understand 
complexity, but they have disadvantages, either they 
do not fully capture the nature of complexity, or 
they are fundamentally incomputable. 

 

INTRODUCTION TO COMPLEXITY

 

The word complexity comes to us from the Latin 
word 

 

complexus

 

, meaning ‘in totality’ or ‘a whole set 
consisting of many interconnecting parts.’ The defi-
nition of the word includes the connotation ‘diffi-
cult to understand’. The Universe, as well as every 
object in the Universe, consists of many intercon-
nected parts. Humans have attempted to reduce the 
apparent complexity of nature, in other words to 
understand the Universe, by observing particular 
instances of the operation of subsets of intercon-
nected, or interacting, parts. Hypotheses are gener-
ated, experiments to test those hypotheses are 
developed, and the outcome of the experiments 
either reinforces, or counters the hypotheses. Varia-
tions on the original hypotheses, or entirely new 
hypotheses are generated and tested and the cycle 
continues. Science has progressed in this manner in 
search of the essence, or most general underlying 
explanation for as many phenomena as possible. As 
discussed later in this report, the very critical act of 
hypothesis formation and testing, the Scientific 
Method, the foundation of science upon which Man 
depends for advances in every aspect of civilization, 
is itself governed and characterized by complexity.

How far can the Scientific Method, described 
above, take us in understanding Complexity The-
ory? When one studies complexity as a science, the 
focus becomes a simplified understanding of large 
numbers of interactions. Subtle, yet insidious prob-
lems render the study of complexity a challenging 
problem. The particular details of individual parts, 
important in specifying interactions, are less impor-
tant to the understanding of complexity than the 
interactions. An exception is when the parts them-
selves consist of many interacting parts. This implies 
the existence of layers of complexity. How can one 
obtain a perfectly closed subset of the Universe in 
which to test hypotheses concerning complexity? 
The mere act of measuring any characteristic of such 

a system violates closure. How can one be certain 
that there are no interactions at some unknown level 
with in the supposedly closed system and the rest of 
the Universe? Is it possible for one system to mea-
sure the complexity of another more complexity sys-
tem? These are some of the questions that we will 
explore in this report. Gödel has demonstrated that 
a system cannot completely describe itself with per-
fect fidelity. Berryman’s Paradox suggests that any 
algorithm capable of computing complexity must be 
at least as complex as the object whose complexity is 
being measured. How can one measure the com-
plexity of an algorithm that measures complexity 
without requiring a more complex algorithm? Mea-
suring the complexity of the more complex algo-
rithm requires an even more complex algorithm, ad 
infinitum.

While studying Complexity Theory, researchers 
focused on the science of interactions of large num-
bers of parts, have noticed that something amazing 
happens under certain conditions. Unexpectedly 
complex results, based upon simple interactions can 
occur. This is known as emergence. Detecting and 
controlling emergence could also lead to ground-
breaking results. The implications are that program-
ming simple interactions while letting emergent 
behavior handle the bulk of the work in a robust 
manner could control the desired characteristics of 
a system. In other words, complexity theory, specifi-
cally through emergence, could provide a new and 
much more efficient and robust form of control. 
Ultimately, complexity theory and emergence could 
progress to self-organizing systems. These are sys-
tems whose natural tendency is to align in a form 
optimal to the task required. An example is a self-
healing system, that is, a system that inherently re-
forms to mitigate a fault. 

 

MEASURES OF COMPLEXITY

 

There have been many attempts to define and mea-
sure complexity. Attempts to define the complexity 
of a system might be broadly described as attempts 
to remove portions or patterns, of the system that 
are simple, leaving behind the portions that are 
complex. The size of the remaining portions of the 
system must then contain the complexity of the sys-
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tem. In Figure 1 an attempt is made to cluster 
selected known complexity measures into catego-
ries. The purpose of this figure is to show the great 
variety of complexity techniques and to be able dis-
cuss broad classes of techniques. Except for a few 
specific exceptions, details of each and every tech-
nique will not be discussed. The categories in this 
classification describe the complexity estimation 
technique and thus suitability to types of systems. 
The arrows indicate subclasses of complexity estima-
tion techniques. The highest-level classifications are 
Static and Dynamic techniques. Static techniques 
assume the system whose complexity is to be esti-
mated does not vary with time as the estimation cal-
culation executes. A snapshot of a Dynamic system is 
also considered a static system. Dynamic techniques 
allow the system to change with time; in fact some 
require that the system under analysis change with 
time. 

The Static complexity estimation techniques can 
be further sub-classified into Algorithmic, Indepen-
dent Descriptions, and probabilistic categories. 
Algorithmic techniques attempt to use an algorithm 

as a fundamental description of the complexity of a 
static snapshot of a system. Independent Description 
techniques attempt to count the number of irreduc-
ible components needed represent a system, such as 
number of dimensions, number of independent 
models, or number of irreducible components. 
Probabilistic techniques generally assume that low 
complexity components are more likely than higher 
complexity components. Probabilistic techniques 
also assume attempt to use probability to determine 
independence of sub components of a system allow-
ing the system to be partitioned into independent 
components. In this work, Algorithmic techniques 
are most relevant because of the nature of computa-
tion in the form of executable algorithms and its 
relation to the transmission of information in the 
form of static data. Algorithmic techniques are fur-
ther sub classified into Propositional Logic-based 
and Automata-based techniques. Algorithmic tech-
niques also include minimum description methods 
that seek to estimate complexity by determining the 
smallest size to which a description can be com-
pacted. Complex descriptions, containing a larger 

Figure 1.  Definitions and Measurements of Complexity. 
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number of “random” interactions and lacking any 
form of repeatable patterns, cannot be described as 
compactly as simple descriptions. Kolmogorov Com-
plexity is a complexity measure that falls within this 
category.

Vladimir Gudkov has been exploring the mini-
mum number of dimensions required to character-
ize network information flow [163–166]. Vladimir’s 
work could be categorized in the Dynamic, Self-
Organizing, Evolutionary, Chaotic group of com-
plexity theory techniques. Vladimir’s approaches 
the development of network behavior description in 
terms of numerical time-dependant functions of 
protocol parameters. This provides a basis for appli-
cation of methods of mathematical and theoretical 
physics for information flow analysis on network and 
for extraction of patterns of typical network behav-
ior. The information traffic can be described as a tra-
jectory in multi-dimensional parameter-time space 
with dimension about 10–12. The result of his work 
could help to improve our Kolmogorov Complexity 
estimators.

Kolmogorov Complexity is a measure of descrip-
tive complexity contained in an object. It refers to 
the minimum length of a program such that a uni-
versal computer can generate a specific sequence. A 
good introduction to Kolmogorov Complexity is 
contained in [118] with a solid treatment in [10]. 
Kolmogorov Complexity is related to Shannon 
entropy, in that the expected value of K(x) for a ran-
dom sequence is approximately the entropy of the 
source distribution for the process generating the 
sequence. However, Kolmogorov Complexity differs 
from entropy in that it relates to the specific string 
being considered rather than the source distribu-
tion. 

The major difficulty with Kolmogorov Complexity 
is that it is not computable. Any program that pro-
duces a given string is an upper bound on the Kol-
mogorov Complexity for this string, but you can’t 
compute the lower bound, yet as will be discussed 
later in this section, estimates have shown to be use-
ful in providing information assurance and intru-
sion detection. 

Kolmogorov Complexity is a measure of descrip-
tive complexity that refers to the minimum length of 
a program such that a universal computer can gen-
erate a specific sequence.  Universal computers can 
be equated through programs of constant length; 
thus a mapping can be made between universal com-
puters of different types. The string x may be either 

data or the description of a process in an actual sys-
tem. Unless otherwise specified, consider x to be the 
program for a Turing Machine described in 
Definition 1.

 

(1)

(2)

 

Conditional Complexity, described in Equation 2, 
quantifies the complexity of string 

 

x

 

, given string 

 

y

 

. 
Intuitively, it is the additional complexity of string 

 

x

 

 
beyond that in string 

 

y

 

. This definition of Kolmog-
orov Complexity is used repeatedly throughout the 
remainder of this report.

Kolmgorov Complexity has been shown to pro-
vide a useful framework from which to study objec-
tive metrics and methodologies for achieving 
information assurance. Recent results have shown 
promise for complexity estimators to detect FTP 
exploitsand DDoS attacks. Complexity is attractive as 
a metric for information assurance because it is an 
objective means of characterizing and modeling 
data and information processes for the purpose of 
benchmarking normal healthy behavior, identifying 
weaknesses, and detecting deviations and anomalies.

Since exact measurement of Kolmogorov Com-
plexity is not computable, estimators are required. 
The accuracy and computational requirements of 
estimators together determine the capability or 
practicality of use for a given application. For exam-
ple, the very crude complexity estimate of empirical 
entropy carries very little overhead, but is suitable 
for some applications. Other applications can bene-
fit from complexity metrics when more expensive 
estimation algorithms are utilized, but the computa-
tional expense may not be feasible.

In this report we motivate the use of complexity 
metrics for information assurance by discussing sev-
eral applications of complexity metrics for informa-
tion assurance, each of which depends in some sense 
on accurate complexity estimators. We then discuss 
and compare several ubiquitous complexity estima-
tors, their accuracy, and computational expense. 
Finally, we introduce a new complexity estimator 
and benchmark its capability against others for the 
FTP exploit detection application.

Kϕ x( ) min  l p( )
ϕ p( ) x= 
 
 

=

Kϕ x y( )
min  l p( )
ϕ p x,( ) y=

∞ if there is no p such that ϕ p x,( ), y= 
 
 
 
 

=
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1. Methods and Assumptions

 

1.1 METHODS AND ASSUMPTIONS

 

The project report is presented in the form of three 
hypotheses that correspond with the Imperishable 
Network statement of work. Following each hypothe-
sis is a list of accomplishments relating to validation 
of that hypothesis.

 

Hypothesis 1

 

The first project goal is to explore the hypothesis 
that information comprised of observations from an 
event, such as a fault or attack, which is generated by 
a single root cause, is highly correlated. Highly cor-
related data has a low complexity and a high com-
pression ratio. However, this project is not focusing 
on legacy static compression algorithms, but rather 
algorithmic compression. Algorithmic compression 
involves code that can dynamically change, and 
when executed, regenerates the intended data. The 
compression code is designed to be a hypothesis 
about the data to be compressed. The more accurate 
the hypothesis, the more efficient the compression. 
Algorithmic compression and prediction are tightly 
linked; if a program can predict data (generating 
more data than the program’s size), then it is, by def-
inition, an algorithmically compressed form of the 
data. Active networks form an ideal vehicle for trans-
mitting this form of fault information because they 
facilitate the transmission of code within the net-
work. The most highly compressed, and thus most 
likely, fault representations are transmitted faster 
and farther due to their smaller size. Kolmogorov 
Complexity,

 

 K(x)

 

, measures the size of the smallest 
program capable of representing a particular piece 
of data, thus providing guidance as to the optimal 
amount of information within an active packet to be 
in the form of code versus data. Specific accomplish-
ments towards this goal are:
1. A new algorithm that incorporates both Kol-

mogorov Complexity and entropy, facilitating 
our study of the relationship between them, has 
been devised to both estimate complexity and 
perform compression. 

2. A DDoS attack detection algorithm, based upon 
our hypotheses regarding complexity theory, 
has been implemented. Testing is underway 
within our Active Network testbed. The algo-
rithm makes use of a fundamental theorem of 
Kolmogorov Complexity we derived that states: 

For any two strings 

 

X

 

 and 

 

Y, K(X,Y) <= K(X) + 
K(Y)

 

, where

 

 K(X)

 

 and 

 

K(Y)

 

 are the complexities 
of the respective strings and 

 

K(X,Y)

 

 is the joint 
complexity of the two strings. Stated more sim-
ply the joint Kolmogorov complexity of two 
strings is less than or equal to the sum of the 
complexities of the individual strings. In other 
words, the joint complexity of the string (data 
stream) decreases as the correlation within the 
string increases. This property is exploited to 
distinguish between concerted denial-of-service 
attacks and cases of traffic overload. The 
assumption is that an attacker performs an 
attack using large numbers of correlated packets 
generated from different locations but intended 
for the same destination. Thus, there is a lot of 
similarity in the traffic pattern. A Kolmogorov 
complexity based detection algorithm can 
quickly identify such patterns. On the other 
hand, a case of traffic overload in the network 
tends to have many different traffic types and 
the traffic flows are thus highly uncorrelated, 
appearing to be “random.” Our algorithm sam-
ples distinct packet flows (distinguished by their 
source and destination addresses) to determine 
if there is a large amount of correlation between 
the packets. If it is determined to be so, then all 
suspicious flows at the node are again correlated 
with each other to determine that it is indeed an 
attack and not a case of a traffic overload. We 
compared our technique to a simple packet 
counting algorithm for DDoS detection and 
found that our technique is much more sensi-
tive in detecting attack. Complexity differential 
is defined as the difference between the cumula-
tive complexities of individual packets and the 
total complexity computes when those packets 
are concatenated to form a single packet. In 
effect, we use the measure of the compressibility 
of the packets accumulated in a given time inter-
val to determine correlation. We believe that it 
will also be much more accurate in separating 
false alarms from true attacks. This set of experi-
ments is underway. 

 

Hypothesis 2

 

It is hypothesized that the degree to which informa-
tion can be compressed algorithmically is a measure 
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1.2 Project Challenges

 

of the ease of understanding the information, particu-
larly by an attacker. This concept is used to estimate 
the vulnerability of a system through given observ-
able points within the system. Apparent complexity 
has been defined in this project as the complexity 
normalized to the prior knowledge of an individual. 
Prior knowledge can be obtained automatically by 
watching a potential attacker within a fishbowl, dur-
ing an attack, or assigned by other means. We 
believe that our technique is more efficient, robust, 
and ubiquitously applicable than developing a data-
base of vulnerabilities and testing for all potential 
vulnerabilities as most people have been attempting. 
1. Complexity probes (in the form of Magician 

Active Packets) have been developed and a test 
plan put together that would help verify this 
hypothesis.

Hypothesis 3
It is hypothesized that the algorithmically com-
pressed representation of a network fault provides 
unique opportunities for seeding the composition of 
solutions that mitigate the fault. Thus, the relation-
ship between complexity and fault/solution compo-
sition is being explored for the development of self-
organizing solutions.
1. A simple Mathematica ‘simulation of an active 

network has been developed that focuses on the 
algorithmic aspects of data encoded within a 
packet. It abstracts away networking details 
allowing a focused study of the tradeoff in algo-
rithmic versus static information transmission.

2. A Mathematica‘-based Genetic Algorithm simu-
lator has been instrumented with complexity 
estimation. A decrease in complexity was noted 
during the initial evolutionary stages of all 
genetic algorithms tested. In other words, as 
optimal solutions evolved, the measurement of 
the complexity of the total system decreased.

3. Previous work using genetic algorithms to both 
determine Kolmogorov Complexity and gener-
ate algorithmic representation of multimedia 
data were recently found in the literature and 
help to validate our approach. 

1.2 PROJECT CHALLENGES
Accurate estimation of Kolmogorov Complexity is 
salient to its ubiquitous application to network fault 
tolerance and security. We will benchmark our new 
compression algorithm and estimator for K(x) 
against other means in search of a model base under 

MML that is effective in efficiently and accurately 
estimating Kolmogorov Complexity.

With respect to the DDoS Kolmogorov Complex-
ity application, its performance will be compared to 
other detection algorithms that are currently in use. 
In particular, its performance has to be measured in 
terms of resource tradeoffs, detection and false-
alarm probability and response time. It is hypothe-
sized that other DDoS detection techniques, while 
optimized for detecting certain types of attacks, will 
not be as robust in detecting all types of attacks.

A challenge for this project is identifying or devel-
oping the fundamental theory for composition of 
solutions using Kolmogorov Complexity. 

1.3 CHALLENGE QUESTIONS
1. How well can Kolmogorov Complexity be esti-

mated? 
2. What are the benefits and tradeoffs associated 

with algorithmic information transmission? 
3. Can a network fault be represented algorithmi-

cally? 
4. Can the algorithmic representation of a network 

fault seed the formation of optimal solutions? 
5. What is the meaning of the minimal Turing 

Machine generated from a compression algo-
rithm? 

6. Can a tolerance be incorporated to tradeoff 
computation and complexity estimation? 

7. Is there a convergent form of complexity estima-
tion, i.e. allowing the complexity to converge to 
a value? 

8. Can information fusion be accomplished more 
efficiently using algorithmic forms of informa-
tion? 

9. Could information that is in-transit within the 
network be combined so as to reduce complex-
ity? Example: Bioinformatic data/algorithms 
could be fused within the network from multiple 
sources and only those combinations leading to 
lowest complexity are kept. Assuming that lowest 
complexity indicates most likely explanation. 
Network complexity reduction: think of com-
plexity as energy; the network tries to find lowest 
energy state.

10. What are the fundamental theorems derivable 
from Kolmogorov Complexity that can allow us 
to define algorithms for self-composition?

11. Much work has been done in the past on detect-
ing and measuring the impact of faults. How can 
one quantify and measure the impact of solu-
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 1. Methods and Assumptions

tions, which are of equal importance in match-
ing (composing) faults and solutions?

12. Chaos Theory views system operation in terms 
of phase (state) space. Attractors are patterns in 
phase space in which the system tends to remain 
(a coherent organization). Think of attractors as 
the gravitational pull keeping the network 
together (or functioning properly). Because 
attractors are patterns, they are highly compress-
ible (low complexity). Is a measure of the system 
to self-organize is a ratio of the size of the attrac-
tor versus the size of the operational phase 
space?

13. Consider algorithmic representation of faults. 
Using reversible code (anti-code) it would be 
possible to reverse the computation, i.e. elimi-
nate the fault. I believe they have developed 
anti-code compilers. What could one say about 
the complexity of code and its corresponding 
anti-code?

9



2. Discussion
A key assumption of this work is that complexity and 
information assurances are related. Clearly, the sys-
tem should appear complex to an attacker and sim-
ple to a legitimate user. However, in order to 
anticipate questions that an astute reader might 
have, this section is written in the form of a question 
and answer dialog. Our colleagues have raised some 
of these questions; however, identities will not be 
revealed in order to protect the innocent.
Question: Aren’t higher complexity systems more vul-

nerable to attack? How does that correlate with 
an attacker following the path of least vulnerabil-
ity?

Answer: Assume the Kolmogorov Complexity of a sys-
tem can be represented by x, that is, K(x), is by 
definition, the size of the smallest program capa-
ble of generating x. Thus, K(x) does not vary with 
the implementation of the system. In Section 5.0, 
we discussed how the brittleness of a system 
changes with respect to the efficiency of the 
implementation. We define AKr(x) to be the com-
plexity of system x as viewed by attacker r. While it 
is intuitively and empirically true that more com-
plex systems tend to have more security problems 
this is attributed to the inability of the defender to 
understand their own system fully and thus com-
prehend how to best defend it. It is the differen-
tial between the defenders understanding of a 
system and an attackers understanding that is a 
measure of true information assurance. The 
desired goal is simplicity for the defender and 
complexity for the attacker.

Question: Suppose, as an attacker, I have found an 
encryption key. The encrypted data appears very 
complex, yet knowing the key, I can easily obtain 
the information.

Answer: There is an estimate of complexity known as 
Minimum Data Length description that involves 
compressing both data and the hypothesis used to 
generate that data. If the apparent complexity, 
AKr(x), is estimated for an attacker known to have 
the encryption key, then the complexity will be 
very low. The complexity of the encrypted data is 
always K(x). The apparent complexity of the data 
in the absence of the encryption key is much 
greater than K(x). When an attacker gains the key 

the differential between K(x) and apparent com-
plexity is dissolved and all security is lost.

Question: Wouldn’t an attacker choose to hide inside 
a more complex component than a simple one?”

Answer: A similar question appears in the study of 
work factor as an information assurance metric. 
An attacker may be willing to spend more effort, 
or take a higher complexity path, if he has the 
time and has a suitably high interest in avoiding 
detection. Again, the attacker can exploit the 
defenders inability to understand their system.

Question: Wouldn’t estimating the complexity of 
every bit-stream in a system require a lot of over-
head? Is there a more efficient way?”

Answer: An implementation of complexity-based vul-
nerability analysis that requires bit-stream level 
computation for every possible data flow would 
require a lot of overhead. One possible approach 
is to look at more aggregate views of the system 
and determine complexity from SNMP variables 
as an example. However, consider that non-com-
plexity-based alternative approaches that attempt 
to include extreme detail quickly find the prob-
lem to be overwhelming and in addition, such 
approaches are generally easily broken if they 
miss a particular detail.

Question: One of your estimates of complexity relies 
upon the inverse compression ratio. Isn’t that 
based upon entropy rather than complexity?”

Answer: Yes, our initial complexity estimation tech-
nique relied on the inverse compression ratio. 
This was chosen as a Kolmogorov estimator 
because it appeared to be a low overhead and easy 
to implement technique.

Question: Since there are such sloppy bounds associ-
ated with any estimate of K(x) isn’t the ability to 
measure and utilize conservation of complexity a 
pipe dream?”

Answer: Estimating Kolmogorov complexity is a chal-
lenge. Our current research is focused on finding 
the best metrics and quantifying bounds associ-
ated with these metrics to determine the usability 
of conservation of complexity to solve real prob-
lems. Our hypothesis is that beyond certain 
thresholds abnormal behavior will be noticeable 
using conservation of complexity.
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2.1 SURVEY OF RELEVANT EXISTING 
SECURITY TECHNIQUES AND THEORY

A fundamental basis for information security is elu-
sive. Numerous theories have come to light lately 
that look for a fundamental basis for the study of 
security systems. In this chapter we review some of 
the more fundamental work in this area. We con-
clude this chapter with two analogies—to Thermo-
dynamics and to Electrical Engineering—that yield 
an intuitively pleasing basis that we would like to 
explore.

Bennett/Zurick
Physics of information has been studied for decades 
with many interesting theoretical contributions by 
Zurek et al.[117] and Bennet et al [99]. This body of 
work identifies Kolmogorov Complexity as a basic 
property inherent in the physics of information, and 
strives to resolve actual physical laws of energy with 
information laws. Quantum computing is a related 
area. Our work applies many of the concepts intro-
duced by Bennet and Zurick into the Information 
Security domain.

Harmon
Reference [24] describes a recently developed 
model of information systems where the fundamen-
tal devices are processors, routers, memory compo-
nents and communication components that serve to 
affect information in the form of modulated energy. 
Assumptions and postulates are well laid out to pro-
vide possible future experimental validation of this 
model. System complexity is defined as the number 
of dependencies that exist between pieces of infor-
mation. Our approach differs from this approach in 
that we will use the fundamental quantity of Kolmog-
orov Complexity as our basic building block. 

Fisher Information
Reference [125] puts forth a unification of the laws 
of physics and the statistical quantity known as 
Fisher Information. This shares with our approach 
the gravitation towards a fundamental parameter, in 
this case Fisher Information, which applies locally to 
specific data as opposed to general source distribu-
tions from which data are generated, as is the case 
with Shannon entropy. Fisher information is defined 
as follows:, where Λ is the likelihood function 
described by: given Z, a set of observations and x, a 
time invariant parameter measured by observation 
set Z. A resolution of our approach to these results is 
desired.

Current Security Techniques
Information security (or lack thereof) is too often 
dealt with after security has been lost. Back doors are 
opened, Trojan horses are placed, passwords are 
guessed and firewalls are pierced—in general, secu-
rity is lost as barriers to hostile attackers are 
breached and one is put in the undesirable position 
of detecting and patching holes. In fact many holes 
go undetected. Breaches in other complex systems 
that people care about are not handled in such an 
inept manner. Thermodynamic systems, for exam-
ple, can be assured of their integrity by the pressure, 
heat or mass the system contains. Hydrostatic tests 
can be performed to ensure that there are no 
“holes,” and the general health of the system can be 
ascertained by measuring certain parameters. A 
problem is identified as soon as the temperature or 
pressure drops, and immediately one can take action 
to both correct the problem and to isolate other 
areas of the system from harm. But how does one 
perform a hydrostatic test of an information system? 
What conserved parameters exist to measure the 
health or vulnerability of the system? How can one 
couple the daunting task of providing a system 
where vulnerabilities are readily measurable with the 
required need for simplicity of use for authorized 
users? We explore these issues through various anal-
ogies and propose that only through monitoring 
objective quantities inherently related to informa-
tion itself can the science of information assurance 
move beyond patching holes.

Analogy to Thermodynamics 
An attractive analogy for an information security sys-
tem is given in an analogy to thermodynamics. In 
thermodynamic systems laws of conservation and 
energy flow allow monitoring of the health of the 
system through parameters such as temperature, 
heat, and volume. One does not, for example, in a 
thermodynamic system, wait for all the heat to drain 
from a heat exchanger and a rat to come inside to 
announce that there is a problem. One can tell from 
parameters such as temperature and pressure that 
the system is behaving abnormally. Concepts such as 
entropy and mass map nicely to the information 
security domain. Through our exploration of Kol-
mogorov Complexity, we pursue the analogy to ther-
modynamics. 

Analogy to electrical engineering
Analogies have been drawn between basic electrical 
engineering parameters, such as impedance, cur-
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 2. Discussion

rent, and voltage, and infor mation assurance of an 
information system. Electrical current could be com-
pared to information flow to dishonest participants. 
High resistance or good insulation on an electrical 
cable could represent a network with few holes. 
Through sufficient mappings, some of which are 
shown in Table 1, simplified models, parallels to 
Norton and Thevenin equivalent circuits, could be 
developed through simple measurements and trans-
formations. Additionally, the large body of work ded-
icated to detecting and protecting against electrical 
faults and disturbances could provide some benefit 
to the field of information assurance.

Here the information assurance potential is a mea-
sure of the ability of a system to defend or a perpe-
trator to intrude upon an information system. The 
equivalent resistance of the system is determined by 
considering and quantifying all of the possible sys-
tems (Figure 1). A distinction is made between 
active networks [3] and today’s legacy, or passive net-
works, in this proposed electrical engineering para-
digm. The work involved in forwarding a packet, 
whether active or passive is current that can cause a 
node to do work, that is, current in a motor winding 
that causes energy transfer in a different form. With 
regard to active packets and information theory, pas-
sive data is simple Shannon compressed data, and 
active packets are combination data and programs 
whose efficiency can be estimated through Kolmog-
orov Complexity. Information assurance laws must 
be able to deal with many alternative representations 
of information. Section 3 discusses an electrical 
engineering grid type of information assurance tool.

2.2 THE NETWORK INSECURITY PATH 
ANALYSIS TOOL (NIPAT)

Consider a specific grid-based information assur-
ance tool known as the Network Insecurity Path 
Analysis Tool (NIPAT). NIPAT is a powerful security 
analysis tool developed at GE Global Research that 
has been improved by the results of this project in 
complexity-based vulnerability analysis. NIPAT 
serves as a positive representation for grid-based 
information assurance tools in general. Section 3.1 
discusses their weaknesses. Figure 2 displays 2,000 
vulnerabilities found on a few nodes of a network 
that were thought to be reasonably secure. Vulnera-
bilities are displayed in Figure 2 by host and type. 
The number along each edge of the graph repre-

Table 1 Electrical and information assurance 
properties

Electrical property Security property

Current Data flow to or from dis-
honest participants

Voltage Information assurance 
potential

Resistance Resistance to data flow to 
dishonest participants

Inductance and capaci-
tance

These values follow by 
direct insertion of above 
analogies into electrical 
definitions of inductance 
and capacitance.

Figure 1.  Electrical and Information Assurance 
Properties. 

Figure 2.  A Grid-Based Tool in Action. 
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2.2 The Network Insecurity Path Analysis Tool (NIPAT)

sents the number of opportunities available to the 
attacker to reach the next vulnerability. NIPAT can 
automatically generate a directed graph represent-
ing the security vulnerabilities of a network. This 
information is gathered from network security soft-
ware agents. The security vulnerability graph for a 
typical network can be extremely dense; however, 
the object-oriented nature of the security model is 
useful in choosing the level of abstraction required. 
For example, it may be possible to display the vulner-
ability graph for Unix hosts in general and to hide 
the details of individual Unix variants. NIPAT deter-
mines the degree to which specified targets within 
the network can be compromised. The vulnerability 
chain is displayed as a directed graph. Nodes repre-
sent vulnerabilities whose security may be compro-
mised, and edges represent paths from vulnerability 
to vulnerability. The larger the value of the edge 
label, the greater the vulnerability. The focus of this 
effort is on the mathematical representation of 
information assurance; thus, the underlying data-
base and data gathering agents are not discussed in 
detail here. See Appendix C for more on the opera-
tion of the NIPAT tool.

The information assurance model assumed by 
NIPAT is that of an attacker who has a finite amount 
of resources with which to penetrate network secu-
rity. A resource vector for the attacker is assumed. 
The cost to the attacker of using each of the 
resources against a particular network is defined by 
consumption functions. The cost to network security 
of implementing security measures is defined by a k-
dimensional security function. The attacker’s 
resource vector consists of the strength of each ele-
ment of the attacker’s resources. For example, the 
password decryption resource value would consist of 
the attacker’s CPU speed and amount of time the 
attacker would be willing to spend on the attack. 
The NFS spoofing resource value would be the time 
to install and run the NFS spoofing software multi-
plied by the probability that the attacker has access 
to such software. The host spoofing resource value 
would be a function of the attacker’s ability to evade 
the physical security of a network and install or mod-
ify a host IP address. The consumption function vec-
tor is the complement of the attacker’s resource 
vector. For example, a network with good password 
encryption algorithms or whose users use well-cho-
sen passwords will have a high value for the con-
sumption function for password decryption. Clearly, 
attempting to define all possible security threats to 

any system is a huge undertaking. However, the 
scope of network security is confined to the security 
object model. In this example, the following tech-
niques are assumed to be available to the attacker: 
password decryption, NFS spoofing, hosts spoofing, 
and application security faults. Password decryption 
assumes the attacker has a program capable of 
decrypting users’ passwords. NFS spoofing involves 
violating security to mount another user’s file sys-
tem; host spoofing is causing a host to appear to the 
network as a different host; and an application secu-
rity fault is taking advantage of an application-pro-
gramming fault in order to attack the security of a 
system. Each of these resources is measured in units 
of time. Thus, an attacker with a powerful computer 
and a willingness to wait a long period of time to 
break into a network will have a large password 
decryption resource. An attacker with physical 
access to the network and competent knowledge will 
have a high host spoofing resource value because 
such an attacker can physically connect a host to the 
network. An attacker with much experience and 
knowledge of applications will have a large applica-
tion security fault resource.

Another form of vulnerability analysis involves 
detecting vulnerabilities that change over time. The 
network monitoring tool quantifies the vulnerability 
of a system in terms of percent of patches which fail 
to have the correct signature, percent of files which 
are accessible to others besides the owner, and per-
cent of passwords which can be guessed with a given 
password generation tool. Clearly, vulnerability 
checks such as these increase the security of the net-
work. Both the type of information gathered and the 
frequency with which the information is updated 
quantify the effectiveness of a network monitoring 
strategy. If the information is not updated frequently 
enough, an attacker may have penetrated network 
security and left before network security is aware of 
the situation. An estimate of the effectiveness of the 
monitoring system is based on a profile of network 
security attacks on the Internet and the following 
parameters: time to monitor patches, Trojan horses, 
passwords, and any other vulnerabilities. The attack 
rate is assumed to be Poisson. The average attack 
rate, based on Internet incident reports from an 
anonymous site for a six-year period, is five attacks 
per month. Also the Defense Information Systems 
Agency has determined by experimental means 
[107] that only 0.7% of incidents are actually 
reported. Thus, for each path in the network secu-
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rity vulnerability chain, the cost to the attacker is the 
probability of being detected multiplied by the cost 
function that the additional monitoring provides.

The following list describes the capabilities and 
benefits that a vulnerability assessment tool could 
provide: An automated network security assessment 
tool should have the capability of automatically gen-
erating a directed graph of vulnerabilities. This 
information can be gathered from network security 
software agents. The security vulnerability graph for 
a typical network can be extremely dense; however, 
the object-oriented nature of the security model may 
be useful in choosing the level of abstraction 
required. For example, it may be possible to display 
the vulnerability graph for Unix hosts in general and 
to hide the details of individual Unix variants. The 
network security vulnerability tool determines the 
degree to which the network security can be com-
promised based on minimizing an objective function 
that represents the cost to the attacker. Based on the 
vulnerability graph, the optimal deployment loca-
tion and capability mix of the security agents is 
determined. Note that this is closed feedback loop; 
the security agents are sending information to the 
security analysis tool, which controls the deployment 
of the agents. The network security vulnerability 
assessment tool should indicate the degradation in 
the quality of service to legitimate network users as 
security counter measures are taken as well as 
dynamically indicate the security vulnerability of the 
network. An object-oriented prototype network vul-
nerability analysis tool, NIPAT, which implements 
most of the above requirements, has been imple-
mented using Java. The vulnerability chain is dis-
played as a directed graph. Nodes represent entities 
whose security may be compromised, and paths rep-
resent the vulnerability of an entity. The larger the 
value of the path label, the greater the vulnerability.

Mathematica [139] provides an ideal environ-
ment for experimenting with symbolic mathematical 
concepts. The adjacency matrix, which represents 
the vulnerability graph from NIPAT, can be read into 
Mathematica. The directed, weighted adjacency 
matrix is used to determine the shortest path 
between every two nodes. The insecurity values can 
be displayed as a contour map and a density plot, 
where high areas in the topological view are secure, 
and those lower are relatively less secure, as shown in 
Figure 3 and Figure 4 for the system shown in 
Figure 2.

As has already been mentioned, extant forms of 
automated security vulnerability analyses rely on 
polling, which becomes infeasible in large-scale net-
works and in highly dynamic environments. Other 
approaches towards vulnerability analysis and intru-
sion detection need to be developed. There are two 
independent research efforts that are leading 
towards a mutually beneficial solution to the vulner-
ability assessment and network security problem. 
These research efforts are the human biological 
immune system approach to network security and 
Active Networks [3]. Active networking implements 
the cliché that “the network is the computer.” Active net-
working allows users of the computer communica-
tions network to inject programs into the network to 
customize processing of user and application spe-
cific data. Thus, just as hormones control and regu-
late biological systems, active networks allow 
programs to travel the network modifying security 
behavior. The biological analog of intrusion detec-
tion is highly distributed. The advantage of a distrib-
uted intrusion detection system is that the 
probability of detecting an intruder increases signifi-
cantly as the intruder is forced to pass through more 
independently operated intrusion detection systems. 
Biologically inspired forms of vulnerability quantifi-

Figure 3.  Topographical Map of 
Security. 

Figure 4.  Density Graph of Secu-
rity. 
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cation would include injecting a network with a 
harmless virus and measuring how far it can spread 
throughout the network. This would clearly indicate 
the location of vulnerabilities. A more aggressive 
solution would involve “growing” many simple cells 
(processes) in a closed computer environment. 
These cells (processes) constantly mutate, repro-
duce when they successfully attack an intruder (non-
self), and die when they attack legitimate system and 
user processes (self). Over time, by natural selection, 
only useful processes will remain which can be 
injected into a network and used to detect and 
attack intruders. Clearly, active networking enables 
new and more flexible security safeguards in addi-
tion to facilitating the development of the immuno-
logical approach towards network security.

A network security analyst can allocate security 
safeguards in order to minimize the entire network 
vulnerability, or to minimize the vulnerability from 
known attack points to particular targets. A quick 
study using NIPAT is presented. First, from a funda-
mental network vulnerability flow viewpoint, the 
strategy of allocating safeguards in combinations of 
serial and parallel strategies can be examined. 
Figure  shows NIPAT analyzing an attack from host A 

to host B. In this case, the number of opportunities 
has been normalized into probabilities. Figure 6 
shows the results as security safeguards are removed. 
The solid line is the vulnerability of a single connec-
tion from the attacker to the defender having the 
same vulnerability flow as the links shown in Figure . 
With a probability of less than 0.6 a diversity of vul-
nerability types helps to increase security, but inter-
estingly, above 0.6 it does not.

Let us assume that vulnerability has been calcu-
lated by NIPAT to be either the maximum insecurity 
flow or probability of successful attack, where S rep-
resents security safeguards, C(S) is the cost of secu-
rity, and L is the cost constraint or some other hard 
resource limit. Next we discuss the cost in terms of 
impact on users; here it is strictly a financial cost or 
other resource constraint. Objective Function 3.1 
shows how the optimal security safeguard allocations 
can be determined.

It is possible to use NIPAT to study various strate-
gies of both defensive and offensive players in a net-
work attack. Once an attack has been detected, the 
network command and control center can respond 
to the attack by repositioning security safeguards 
and by modifying services used by the attacker. How-
ever, cutting-off services to the attacker also impacts 
legitimate network users, and a careful balance must 
be maintained between minimizing the threat from 
the attack and maximizing service to customers. For 
example, various stages of an attack are shown in 
NIPAT in Figure 7 along the yellow path. Since the 
allocation of security resources never changes 
throughout the attack, the vulnerability of the target 
increases significantly with each step of the attack.

Our proposed enhancement would be to incorpo-
rate the following algorithm into NIPAT. Let CS rep-
resent the network service to customers, with a 
minimum accepted quality, Q. Let V(S,A) be the vul-
nerability of the network to a particular attacker, A. 
Then Objective Function 3.2 shows the optimal net-
work response given the current state of the attack.

The results of this proposed research will include 
a better understanding of how to respond to net-
work security attacks. In addition the existing NIPAT 

Figure 5.  An Example of Security Safe Guard Assumption. 

Figure 6.  Series versus Parallel Vulnerability Attack. 
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 2. Discussion

will be incorporated with new algorithms, serving as 
experimental validation of the results from this 
project.

Failure of the grid-based approach
The grid-based approach, limited to the capabilities 
as previously discussed, has a considerable number 
of shortcomings. The first is the inability of the grid-
based mechanisms, as presented above, to assign 
meaningful initial values that represent either secu-
rity or insecurity. The current implementation of 
NIPAT uses scalar values that represent the 
“strength” of an attacker and the number of oppor-
tunities for an attacker to exploit a chain of a priori 
identified vulnerabilities. The reasoning in the 
development of NIPAT is that the strength of an 
attacker is a representation of the attacker’s power 
in terms of combined instructions per second, 
advanced knowledge of the system under attack, and 
skill in the use of attack strategies. It has been pro-
posed to augment NIPAT with vectors, where each 
element represents an attacker’s strength in exploit-
ing various predefined vulnerabilities. However, this 
assumes advanced knowledge of all possible vulnera-
bilities and the attacker’s strength in exploiting each 
of those vulnerabilities. This is not a reasonable 
assumption for a system of even low complexity. 
Using a database, expert system, or object-oriented 
abstraction, to handle aggregations of vulnerabilities 
does not lead to a feasible solution because these 
mechanisms require that all possible vulnerabilities 
be known a priori. A more general vulnerability dis-
covery and quantification technique is necessary.

It is our belief that many such tools, such as 
NIPAT, are salvageable as an information assurance 

design tools. The good qualities of NIPAT, such as 
safeguard optimization and likely attack path identi-
fication, particularly to lead an attacker to a fish-
bowl, are useful mechanisms for information 
assurance design. To provide a brief preview of our 
proposed solution for grid-based tools, consider the 
resistance in the electronic circuit analogy of infor-
mation assurance as complexity where complexity 
and resistance are directly proportional. The rela-
tionship among vulnerability, resistance, and com-
plexity is developed in more detail later in this 
report. In Section 3.3 we look at the properties 
required of a meaningful information assurance 
metric.

Fundamental properties and parameters of 
information
As discussed in the introduction, we desire to move 
the study of information assurance to a fundamental 
domain, where attacks need not be defined in 
advance. But what are the fundamental properties of 
information and how can we build upon them to 
achieve a science for the assurance of this informa-
tion. We discuss below some basic properties of 
information that are candidates for fundamental 
parameters upon which to build.

Size—In his ground breaking 1949 paper, Shannon 
introduces fundamental tradeoffs and limitations on 
the ability to transmit information across a channel 
disturbed by Additive White Gaussian noise (AWGN) 
[98]. This launched the science of information the-
ory that has transformed the study of communica-
tions and coding of information, bringing the use of 
the term “bit” of information, which Shannon cred-
its to J.W. Tuckey, into the mainstream literature. 
The idea that information can be quantized into bits 
(or sequences of yes or no answers to questions) is 
now well accepted, and one measure of the size of 
information is the number of bits used to convey the 
information. Information compression coding – 
both lossless and lossy– as well as forward error cor-
rection coding alter the size of the information in 
terms of bits by removing or adding redundancy. 
However, the unit of size, bits, is the term used to dis-
cuss the size of information, whether it is efficiently 
coded or not, error prone or self-correcting. Thus, 
while it is possible for information to change size 
without altering content, size is a fundamental prop-
erty of information that should come into play 
under a set of fundamental laws of information 
assurance.

Figure 7.  Various stages of attack. 
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2.2 The Network Insecurity Path Analysis Tool (NIPAT)

Entropy—Shannon entropy [179] is a fundamental 
property of information that measures the uncer-
tainty of a random variable X based on the probabili-
ties of each outcome:

Entropy therefore relates to a source distribution 
of a random variable. Kolmogorov complexity is a 
related parameter that will be discussed in detail 
that relates to a specific sequence of information. 
These two parameters are extremely powerful prop-
erties of information that occur at the most funda-
mental level.

Density, Mass or Energy—Density, mass and energy 
are properties of matter that have parallel and intu-
itively pleasing meanings in the domain of informa-
tion. Density, like Kolmogorov Complexity, may 
measure the ability of a sequence to be compressed. 
Mass may simply represent the number of ones in a 
sequence, and energy as in thermodynamics may tie 
together quantities such as mass, density or entropy. 
The overriding goal is to find parameters that can be 
observed directly from the information sequences 
themselves and compare objective quantities on 
which to base the science of information assurance.

Towards complexity-based information 
assurance
Beginning with a high-level view of the problem def-
inition, Figure 8 shows both secure manner of oper-

ation and insecure operation. Both manners of 
operation exist in the space of all possible forms of 
operation, M. Insecure operation, MI, consists of 
those methods of operation that allow an informa-
tion warfare aggressor entrance or access to control 
points into the information system. The intended 
secure operation areas MS are well known, and some 
of the insecure paths are also known. Note that MS 
and MI can, and usually do, overlap. However, the 
entire area of operation can be extremely large and 
an exhaustive search for all insecure operation is not 

feasible. In Figure 8, Euclidean distance corre-
sponds to the degree of security. This leads one to 
consider a metric space upon which to base informa-
tion assurance. The initial approach assumes only 
that the metric has the characteristics of a metric in 
the mathematical sense as shown in Definition 3.1 
where d is distance and p and q are points. Point p 
and point q have not been explicitly defined. As illus-
trated in the left side of Figure 8, an information sys-
tem de-composed into many operating components 
could have a surface area as shown on the right side 
of Figure 8. Note that this surface is likely to change 
as a function of time; however, the time indices are 
not written for now. The points p and q are assumed 
to be relative to some absolute value; p and q can be 
security values in either different locations or at dif-
ferent time instances of the system. If d is a measure 
of security, then Definition 3.1 implies that there is 
no difference in security between the same point 
and itself; however, there must be a difference 
between any two distinct points in the security space. 
Definition 3.1 states that the measure between any 
two points in this space should be the same regard-
less of the order in which one takes the measure-
ment. This means that, observed from a common 
vantage point, if security is measured at two different 
points in this space, p and q, then the measure of 
security will be the same regardless of the order in 
which the points are entered in the measure. It does 
not imply anything about the strength of an attack 
from p to q or an attack from q to p. It means, for 
example, that if p is less than q, then an attack from 
outside the system against p will be more likely to 
succeed than an attack against q. Finally, Definition 
3.1 states that the distance between any two points 
will be less than or equal to the sum of the distances 
between each of those points and a common third 
point. Again, remember that this is a measure of 
security taken from a view outside the system of a 
potential attack from outside the system. As dis-
cussed in more detail in the remainder of this 
report, the actual measure will change as an attacker 
penetrates the system and as the attacker gains more 
knowledge of the system.

In Figure 3 and Figure 4 a topographical and 
density plot shows the security of the system in 
Figure 2. These graphs are only suggested means of 
viewing information assurance, not a recommenda-
tion. Summing the attack strength at each node 
from all other nodes generates the graphs. Thus, the 
topology, or density, is the vulnerability of a particu-

Figure 8.  Set Theory View of Secure Operation. 
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 2. Discussion

lar area of the graph to all attacks. The light areas in 
the density plot and the higher areas in the topology 
map are areas of low vulnerability, while the darker 
areas or lower areas on the topology map are areas 
that are well secured. Remember that these are 
graphs of known vulnerabilities and the likelihood 
that they will be penetrated. The problem with these 
graphs is two-fold: what is the metric used to obtain 
the insecurity for each vulnerability, and how can it 
be assured that all vulnerabilities have been 
included in the graphs? Maps such as these require 
that Definition 3.1 must be satisfied.

Information assurance via set theory and 
complexity
If information assurance can be proven to reside in a 
metric space, or alternatively, if a metric space can 
be chosen in which information assurance can 
reside, then principles of mathematical analysis 
[100] can be used to rigorously determine more 
detailed characteristics. For example, M can be 
extremely large, possibly infinite. Are MS, or con-
versely, MI, open sets? If so, can limit points be 
defined? What does an open set mean with regards 
to information assurance and security? As a simple 
example, consider a password protection system. 
Each character that a legitimate user of the system 
adds to a password increases the number of possibili-
ties that a brute force (non-dictionary) attack would 
require in order to guess the password. Thus, the 
longer the password, the more secure the system. 
While an infinite length password is not possible, the 
security does begin to approach a limit point. This 
can also be seen, for example, in any security safe-
guard that works via the addition of complexity (that 
is, adding more states to the Turing Machine to 
increase security). This approach towards safeguard 
design approaches a limit point but can never reach 
perfect security. However, in general, this appears to 
be the only known approach, and thus limit points 
must exist. Assurance is usually increased by increas-
ing the apparent complexity of access to potential 
attackers while providing legitimate users the appar-
ent, least complex, or in some sense, shortest, path 
to access of information. The complexity approach 
is carried forward in more detail in Section 6.

Topological space for information assurance
By definition, an open set, E, is one in which every 
point is an interior point. A point, p, is an interior 
point of E if there is a neighborhood, N, of p such 
that. A neighborhood Nr(p) of point p consists of all 

points q such that where r is called the radius of the 
neighborhood. If security, as determined by a given 
metric, is an open set, then there are significant 
implications because of this. The best that can be 
hoped for in such a case is to determine limit points 
because a distinct boundary between security and 
insecurity would not exist. Will it be the case that 
adding layers of security is much like adding “open 
covers”; that is, the result can never be perfect secu-
rity, but rather an approach to a limit point? The 
complement of an open set is closed; what does that 
imply for assessment of insecurity? NIPAT takes both 
probabilistic and maximum flow approaches to com-
puting network insecurity flows. This tool is incom-
plete for at least two reasons: it assumes that all 
vulnerabilities have been identified and measured 
and that the vulnerabilities can be manipulated as 
discrete, closed sets. In order to determine whether 
such measurements can be applied to information 
assurance, consider topology, metric spaces, and the 
fundamentals of measurement theory in more 
detail. The definition below shows how the topology 
is induced by a metric d.

In the definition above is a collection of subsets of 
such that and, any finite intersection of members of 
is in, and any union of members of is in. For pur-
poses of removing unnecessary detail, assume that 
the information system is a Turing Machine. Also 
assume that the vulnerability analysis tool in [43] dis-
plays vulnerabilities within the Turing Machine. 
Lemma 3.1 illustrates the topology that will be 
induced.

The intuitive notion is that d represents the ease 
of movement of an intruder from one vulnerability 
to another, where  : . A simple met-
ric, as discussed previously, is to define d as the num-
ber of state/transition sequences within a Turing 
Machine representation of a system which an 
intruder can follow to move from vulnerability x to 
vulnerability y, or equivalently, the cardinality of the 
set of V from Definition 3.1. In this induced metric 
space, the NIPAT vulnerability tool can be consid-
ered an overlay of the Turing Machine representa-
tion of the system. The NIPAT tool filters out the 
state and transition details and shows only the direct 
connection among the vulnerabilities. Does infor-
mation assurance reside within this metric space? 
One test would be whether the metric supports the 
design tradeoffs required in determining brittleness 
in the design of the system. To answer the above 

d x y,( ) X X× ℜ→
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2.3 An Information Assurance Model

question, let  be the set of currently exploited 
vulnerabilities. Most information security 
approaches, including the one above, assume that 
all vulnerabilities have been discovered and mea-
sured. This can never be assumed to be the case. Per-
formance, , from Definition 6.1 is an open set, and 
as new security holes are discovered, . If V 

represents vulnerability and is open, then secure 

operation, , is closed. Assume that 

for any . Note that x is now an 

element of the set of secure operation. In other 
words, the number of secure operations is bounded. 
It is well known that a set is compact if and only if it 
is closed and bounded. Next, Section 4 takes a closer 
look at a model for Information Assurance upon 
which our new metric is based.

2.3 AN INFORMATION ASSURANCE MODEL
In order to develop a reference and working model 
for our exploration into the fundamentals of cyber-
security and cyber-physics, a Turing Machine [110]is 
used to characterize system operation. The Turing 
Machine is one of the most fundamental general 
computing abstractions and is well-known in com-
puter science. It has a rich theory of its own that this 
report intends to utilize to its advantage. The Turing 
Machine consists of a seven-tuple (Q, T, I, δ, b, q0, qf). 
Q is a set of states, T is a set of tape symbols, I is a set 
of input symbols, b is a blank, q0 is the initial state, qf 
is the final state. δ is the next move function. δ maps 
a subset of Q × Tk to Q × (T × {L, R, S})k. L,R, and S 
indicate movement of the tape to the left, right, or 
stationary respectively. There can be multiple tapes. 
Thus δ implements a “next move” function. Given a 
current state and tape symbol, δ specifies the next 
state, the new symbol to be written on the tape, and 
the direction to move the tape. The sets of symbols 
that lead to an accepting state (qf) is the input lan-
guage (∑). One approach to the study of security is 
to consider the Turing Machine representing nor-
mal operation of an information system. In such an 
approach, if the Turing Machine recognizes, or 
accepts, an input language, then a user has gained 
access to the system. If the Turing Machine accepts a 
language that we did not anticipate (∑I), then the 
system is vulnerable, as stated in Hypothesis 4.1.

Clearly, the Turing Machine is an abstract repre-
sentation of any protocol implementation, or oper-
ating component operation. The set of 
unanticipated input languages that is accepted is the 
vulnerability of the component, V, as shown in Defi-
nition 4.1. This is illustrated in an existing tool GE 
Research has developed [43]which displays system 
vulnerabilities from a Unix operating system run-
ning Internet Protocol data communications. This 
work requires a definition of security, shown in Defi-
nition 4.1. Our use of a metric space requires us to 
prove Definition 3.1 holds.

In order to make the problem of quantifying 
assurance tractable, consider the fundamental assur-
ance characteristics of an individual Turing 
Machine. Assume all internal operations are per-
fectly secure. This follows from [110] in which Tur-
ing notes that machine operations are atomic.1 It is 
assumed also that reading, writing, tape control, and 
state control cannot be observed, modified, or inter-
fered with in any manner. The only effect upon the 
system is the input language. A malicious input lan-
guage, given a single Turing Machine, can cause 
denial of service simply by never halting. Also it is 
assumed that the output tape is accessible to the 
world. Thus a malicious input language could write 
secret information to the output tape. What hap-
pens with multiple users each with their own regu-
lated data access?

Another objective of an attack may be to deter-
mine the function performed by the Turing 
Machine. In this case the attacker is assumed to have 
the ability to enter every member of the input lan-
guage in order to deduce operation by viewing the 
output. The attacker is actually deducing δ. Deduc-
ing process versus data is described from a complex-
ity viewpoint in more detail in Section 6.3. A Trojan 
horse is implemented either by allowing an attacker 
access to modify another user’s input tape, or per-
haps δ of the machine itself.

Given a network of Turing Machines, in which 
one machine’s input is the output of another 
machine, an input language could be self-replicat-
ing, that is, a virus. However, Turing Machines are 
composable. A single machine with additional states 
can implement any set of Turing Machines. This 
implies that a state-based approach should be taken 
in the analysis of assurance. For example, is state qx 
more or less secure that state qy? How can this com-

A V⊂

α

α A
lim A ∞→
----------------------------

V
sup

x V∈
d x x0,( ) ∞< x0

1. In [110], Turing casually notes the symbols on the machine’s tape can form a conditionally compact space.

19



 2. Discussion

parison be made within a single Turing Machine? Is 
the state on a path that leads to an insecure event? 
An individual state by itself does not reveal much 
about the current assurance level. However, a set of 
states, considered along a continuum, provides 
much more information. Can a gradient be estab-
lished that leads to the likelihood of an insecure 
event? Such a gradient requires a well-defined met-
ric, which is what this work is leading towards. One 
approach towards computing vulnerability would 
require checking every possible input language in 
order to quantify relative insecurity levels. This is 
obviously an intractable approach. This problem is 
tackled by means of complexity in Section 6.

In order to begin to understand how information 
assurance can be quantified, consider the manner in 
which systems that implement information assur-
ance can be designed. Design involves the tradeoff 
of one benefit for another. Brittle Systems provide a 
framework for understanding the tradeoffs in per-
formance versus failure of information systems. Brit-
tle systems analysis [108] is based on the idea that 
systems can fail in a manner analogous to brittle 
fracture. A system can maintain very high perfor-
mance until it fails quickly and catastrophically, as 
illustrated by performance curve Ph Figure 9 or sys-

tems may fail by exhibiting lower performance in a 
gradual, more ductile manner as in curve Pl. The 
mapping between Brittle Systems Theory and infor-
mation assurance is shown in Table 2. This analysis 
can be directly applied to the Turing Machine. 
Changes in any of the state machine parameters, Q, 
T, I, δ, b, q0, qf, may modify the brittleness of the sys-
tem. For example, addition of a new state and transi-
tion could cause the system to behave in a more 
ductile or brittle manner. What is the measure of 
performance in a Turing Machine model of infor-
mation assurance? What does catastrophic failure 
mean in a Turing Machine model of information 
assurance? Performance is α from Definition 5.2 

and X is measured related to attacker effort. The 
answers to the above questions are intimately linked 
to the choice of metric. Based on Definition 3.1 dis-
cussed previously, one could choose the metric to be 
the number of state/transition paths available to an 
attacker to reach a particular target state, or equiva-
lently, the cardinality of the set of languages, V, given 
in Definition 3.1. Another possible metric could be 
the proximity of the attacker’s current state to the 
target state. Various other complex metrics could be 
contrived such as ones that include the work 
involved for an attacker to move from one state to 
another. These complexity metrics are based upon a 
known attacker at a given state. If a single measure-
ment is required to describe the performance of the 
information assurance system, then values generated 
by the choice of metric must be combined in a rea-
sonable manner. However, a single value is not 
meaningful in the same way that capacity would be 
useful in determining load, unless there were a 
meaningful attacker strength with which to operate. 
Next, in Section 5, more detail on Brittle Systems 
and how they relate to a new information assurance 
metric are discussed.

2.4 BRITTLE SYSTEMS, DETERMINISTIC 
FINITE AUTOMATA, AND 
VULNERABILITIES

A Deterministic Finite Automaton (DFA) consists of 
a 5-tuple (S, I, δ, s0, F) where S is the set of states, I is 
the input alphabet, δ is a mapping from into I, s0 is 
the start state, and F is a subset of S called the final, 
or accepting states. A DFA is less powerful than a 
Turing Machine in terms of the languages it can rec-
ognize as well as less capability in performance of 
general computation. However, DFA have been well 
studied and facilitates a framework in which new 
theories related to Information Assurance can be 
studied. An example of Brittle Systems using Defini-
tion 3.1 for vulnerability is illustrated for the DFA 
shown in Figure 10. A single vulnerability is repre-
sented as a single modified transition. The modified 
transition represents an error in either the design or 
implementation that allows an attacker to penetrate 
the system. The effect of each transition modified 
from its original source node to each possible desti-
nation node in the automaton is exhaustively 
checked. The effort expended by an attacker is 
assumed to be proportional to the length of the 
strings used in the language. P = α (Definition 5.2) 
and X is the effort of an attacker measured in terms 

Figure 9.  Definition of Brittleness. 
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of language size required to reach an unintended 
accepting state. The algorithm requires starting with 

the actual system as represented in Figure 10, modi-
fying a transition and then recording the number of 
additional strings accepted. This is repeated for each 
transition in the base system. As shown in Figure 11, 

a modification of the transition from State 7, 
Input 3, Destination State 2, (7,3,2) yields a small 
number of vulnerabilities at string length two with a 

Table 2 Brittle System Definitions

Materials Science Brittle Systems Information Assurance

Stress Amount parameter exceeds its tolerance

Applied force under the 
weight of an

attack Toughness 

System robustness Encryption strength and sensitivity of 
intrusion detectors

Ductility 

Level of Performance out-
side

Tolerance Ability of system to gracefully degrade given 
an attack

Plastic Strain Degradation from which the system cannot recover

Trojan horse Brittle Fracture Sudden steep decline in

performance Sudden catastrophic collapse of all 
information assurance

Young’s Modulus 

Amount tolerance exceeded 
over degradation

Deformation 

Degradation in performance The amount by which vulnerability has been increased due to an attack

Brittleness Ratio of hardness to ductility

Ductile Fracture Graceful degradation in performance Ability of information to gracefully degrade 
under an attack

Reversible Strain Degradation from which the system 
can recover

Trojan horse detection and removal

Hardness Level of performance within tolerance 
limits

Resistance to decryption

Figure 10.  Example of Deterministic Finite Au-
tomation. 

Figure 11.  Ductile Vulnerability. 
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 2. Discussion

maximum of 1000 vulnerabilities at string length 8. 
This performance is ductile compared to the graph 
shown in Figure 12, where transition (1,3,1) is modi-

fied. Figure 12 shows more brittle behavior because 
it takes a longer string length, thus more effort by 
the attacker to find vulnerabilities; however, the vul-
nerability increases rapidly as the string length 
increases. A more precise definition of Brittleness is 
given in Definition 5.1. The discrete form of brittle-
ness is accomplished by normalizing the sum of the 
number of strings accepted of systems A and B to be 
the same, then summing the value where B exceeds 
A as in the left side of Figure 13. 

Building upon Definitions 3.1 and 3.2 requires 
that Turing Machine states, Q, be identified as either 
secure or insecure. If an attacker can reach a mem-
ber of qinsecure then the attacker is considered to 
have performed a successful attack. If an attacker 
can never reach a member of qinsecure then the sys-
tem is considered invulnerable. The challenge is 
that neither the attacker nor the defender knows the 
entire structure of the Turing Machine’s program 
because the attacker is unlikely to have complete 
knowledge of the defender’s system and because 
even the defender may not fully understand the sys-
tem that was developed. The unknown behavior of a 

system is discussed later in terms of Apparent Com-
plexity in Section 6.5. 

Definition 5.3 provides a means for easily comput-
ing complexity in the world of finite automata. Next 
the relationship between brittleness and complexity 
is addressed. One might intuit that a faulty transition 
in a less complex automaton will have less of an 
impact than a faulty transition in a complex version 
of the equivalent automaton. The definition of 
equivalent automata is given in Definition 5.4.

The simplicity, intended to be the opposite of 
complexity, is given in Definition 5.5 as the differ-
ence in size between the current implementation of 
an automaton and its minimized size.

A simple implementation of an automaton has 
more transitions and states than necessary to imple-
ment the automaton. Thus, there is more opportu-
nity for an attacker to find a weak point in the 
system. However, once an attacker breaks into a sim-
ple system, there will be, on average, more energy, 
that is, longer string length, required to reach the 
attacker’s destination. Thus, greater simplicity 
should imply reduced brittleness (Hypothesis 5.1).

Figure 14 and Figure 15 show a simple and com-

plex implementation, respectively, of the same arbi-
trary information system. Figure 14, as a simple 
implementation, is what might be intuitively 
referred to as an inefficient implementation, with 
many more states than necessary. This yields the 
opportunity for more vulnerabilities and faults. 
However, it also takes the attacker more effort to 

Figure 12.  Brittle Vulnerability. 

Figure 13.  Definition of Brittleness. 

Figure 14.  A Simple DFA. 
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reach a given target. Figure 15 is a closer representa-
tion of the true complexity of the same system. It has 
fewer opportunities for failure; however, the failures 
that occur will be more significant.

In Figure 16 and Figure 17, brittleness and com-

plexity are compared. Brittleness is computed as 
defined in Definition 5.1. Performance is defined 
based upon the number of accepted strings and lan-
guage size. The ratio of the number of accepted 
strings to total language size is inversely propor-
tional to the performance. For each possible fault, 
this ratio is compared to a consistent base case con-
sisting of an exponentially growing number of 
accepted words as the language size increases. A brit-
tle system accepts few words initially, then suddenly 
accepts a large number, while a ductile system 
accepts a moderate, but gradually increasing num-

ber with no sudden increase. The brittle measure is 
graphed as a function of a fault in the state specified 
on the dependent axis. A fault is the disappearance 
of a state that results in the direct connection of a 
transition to the destination nodes of the faulty 
node. Complexity is estimated as the number of 
transitions in the smallest representation of the 
resulting faulty system. Comparing Figure 16 and 
Figure 17, there appears to be an opposite relation-
ship between brittleness and complexity. That is, a 
system with greater complexity results in lower brit-
tleness. Greater complexity indicates a larger num-
ber of transitions and states exist, thus there is more 
opportunity for an attack, but more effort is 
required by the attacker to successfully complete the 
attack. In Figure 18 and Figure 19 a similar analysis 

is performed on the more compact, or truer repre-
sentation of the complexity, of the same system. 
Notice that the system with an implementation that 
is closer to its true complexity is much more brittle. 
Also, note that the inverse relationship between 

Figure 15.  Complex Version of the DFA Shown 
in Figure 14. 

Figure 16.  Brittle Measure of DFA Shown in Figure 14. 

Figure 17.  Complexity of DFA Shown in Figure 14. 

Figure 18.  Brittle Measure of System Shown in Figure 14. 
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 2. Discussion

complexity and brittleness holds in the more com-
plex system as well.

An important result in this exploration of the 
relationship among vulnerability, complexity, and 
brittleness is that the larger the system, in terms of 
the number of transitions and states, the lower its 
brittleness. This suggests that larger systems, requir-
ing traversal of larger numbers of states and transi-
tions to reach an accepting state, or attack target, 
require more effort to successfully attack. A system 
that has a large amount of inherent complexity can-
not be made any more compact than its Kolmogorov 
Complexity, which is discussed later. An intelligent 
attacker may be able to observe an inefficiently 
implemented system and reduce it to its most com-
pact form, that is, its Kolmogorov Complexity, thus 
easily identifying paths of attack to reach specific tar-
gets. A truly safe system is thus obtained, not by 
building inefficiency in the system, but rather, by 
making the view to the attacker as inherently com-
plex as possible. 

2.5 KOLMOGOROV COMPLEXITY
Information must be accessible to legitimate 

users while access is denied to potential attackers. 
This is done by increasing the apparent complexity 
of access to information and by providing legitimate 
users with enough a priori knowledge to reduce the 
apparent complexity. This leads one to conclude 
that complexity itself would be a useful metric for 
Information Assurance. However, the search for an 
absolute measure of complexity is a problem that 
may be equally as hard as quantifying Information 
Assurance itself. There is a good reason for this; they 
are, in a sense, one and the same thing. To show this, 

begin with the definition of complexity. Kolmogorov 
complexity is a measure of descriptive complexity 
that refers to the minimum length of a program 
such that a universal computer can generate a spe-
cific sequence. Kolmogorov complexity is described 
in Definition 6.1, where ϕ represents a universal 
computer, p represents a program, and x represents 
a string. Universal computers can be equated 
through programs of constant length; thus a map-
ping can be made between universal computers of 
different types.

Kolmogorov Complexity is proposed as a funda-
mental property of information that has properties 
of conservation that may be exploited to provide 
information assurance. In this report, Kolmogorov 
Complexity is reviewed and current work in this area 
explored for possible applications in providing 
information assurance. The concept of Minimum 
Message Length is explored and applied to informa-
tion assurance, yielding examples of possible bene-
fits for system optimization as well as security that 
can be achieved through the use of Kolmogorov 
Complexity based ideas. Finally, complexity based 
vulnerability analysis is demonstrated through simu-
lation in Section 9.

Currently information security is achieved 
through the use of multiple techniques to prevent 
unauthorized use. Encryption, authentication/pass-
word protection, and policies all provide some level 
of security against unauthorized use. But other than 
simply relying on these secure barriers, how does 
one measure the health of a security system. If a 
password or encryption key is compromised, what 
indication will be available? The degree to which a 
system is compromised is difficult to ascertain. For 
example, if one password has been guessed, or two 
encryption keys determined, how secure is the infor-
mation system? Are all detectable security issues 
equal, or are some more important than others? 
These difficulties reflect the fact that there is no 
objective, fundamental set of parameters that can be 
evaluated to determine if security is maintained. 
Insecurity may not be detected until an absurd result 
(rat in a tank) discloses the presence of an attacker. 
An inherent property of information itself is desired 
that can be monitored to ensure the security of an 
information system. The descriptive complexity of 
the information itself – the Kolmogorov Complexity 
– is a strong candidate for this purpose. 

Figure 19.  Complexity Measure of System Shown in 
Figure 14. 
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Complexity and vulnerability in information 
assurance
Progress in information assurance cannot proceed 
without fundamental measures. Measurement 
requires that information assurance be identified 
and quantified. In order to make progress towards 
this goal the results of a study in the evolution of the 
complexity of information are presented. An under-
lying definition of information security is hypothe-
sized based upon attacker and defender as 
reasoning entities, capable of innovation. This leads 
to a study of the evolution of complexity in an infor-
mation system and the effects of the environment 
upon the evolution of information complexity. 
Understanding the evolution of complexity in a sys-
tem enables a better understanding of where to mea-
sure and how to quantify vulnerability and should 
lead towards a calculus of information system com-
plexity. Finally, the design of the tool under con-
struction for automated measurement of 
information assurance, used to gather and analyze 
the complexity data in this report, is presented. The 
motivation for complexity-based vulnerability analy-
sis comes from the fact that complexity is a funda-
mental property of information. If the interaction of 
information complexity with its environment can be 
understood, then a new understanding of informa-
tion assurance may be possible, one in which assur-
ance can be better understood and measured. 
Quantification is necessary because tools have been 
developed to measure and analyze security assuming 
that rigorously defined security metrics exist. Unfor-
tunately, such metrics do not yet exist.

One method for examining information assur-
ance is to consider its converse, insecurity and vul-
nerability. Vulnerability analysis tools today require 
types of vulnerabilities to be known a priori. This is 
unacceptable, but understandable given the chal-
lenge of finding all potential vulnerabilities in a sys-
tem. Information assurance is a hard problem in 
part because it involves the application of the scien-
tific method by a defender to determine a means of 
evaluating and thwarting the scientific method 
applied by an attacker. This self-reference of scien-
tific methods would seem to imply a non-halting 
cycle of hypothesis and experimental validation 
being applied by both offensive and defensive enti-
ties. Information assurance depends upon the ability 
to discover the relationships governing this cycle 
and then quantify and measure the progress made 

by both an attacker and defender. This work 
attempts to lay the foundation for quantifying infor-
mation assurance in such an environment of escalat-
ing knowledge and innovation.

Any vulnerability analysis technique for informa-
tion assurance must account for the innovation of an 
attacker. Such a metric was suggested about 700 
years ago by William of Occam [94]. Occam’s Razor 
has been the basis of much of this invention and the 
complexity-based vulnerability method to be pre-
sented. The salient point of Occam’s Razor and 
complexity-based vulnerability analysis is that the 
better one understands a phenomenon, the more 
concisely the phenomenon can be described. This is 
the essence of the goal of science: to develop theo-
ries that require a minimal amount of information. 
Ideally, all the knowledge required to describe a 
phenomenon can be algorithmically contained in 
formulae, and formulae that are larger than neces-
sary indicate lack of a full understanding of a phe-
nomenon. The working hypothesis in this report is 
that vulnerabilities are locations of low complexity.

Next consider the attacker as a scientist trying to 
learn more about his environment. In this case, the 
environment is an Information System. The attacker 
as scientist will generate hypotheses and theorems. 
Theorems are attempts to increase understanding of 
the universe by assigning a cause to an event, rather 
than assuming all events are random. From [94]and 
Definition 5.1 above, if x is of length l(x), then a the-
orem of length l(m), where l(m) is much less than 
l(x), is not only much more compact, but also 2l(x)-
l(m) times more likely to be the actual cause than 
pure chance. Thus, the lower the complexity of the 
theorem, as stated by Occam’s Razor, the more likely 
the theorem is to be correct.

Consider Figure 1 and Figure 2and notice how 
one intuitively views current as an attacker’s strength 
and voltage differential as the desire or pressure of 
an attack upon a system. Resistance is intuitively 
viewed as the ability of the system to block an attack. 
Thus, following this intuition, one can view vulnera-
bility as inversely proportional to resistance and 
directly proportional to the complexity of the system 
as viewed by an attacker. Capacitance and induc-
tance might be intuitively viewed as relating to the 
brittleness of the system. Brittle Systems analysis is 
discussed later; however, it relates to the tradeoff in 
performance and degradation of a system. This intu-
ition is captured in Hypothesis 6.1.
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This hypothesis is significant because it sets the 
direction of our efforts and determines the funda-
mental basis upon which the remaining work rests. 
As the attacker is refining the theorems (that is, 
reducing their complexity), the defender is attempt-
ing to raise their complexity, while still maintaining 
(low complexity) access for legitimate users. Thus 
there is an ever-increasing cycle of complexity (see 
Figure 20). It is as though while a scientist studies 

natural phenomenon, nature actively tries to hide its 
true internal operation through the addition of 
more complexity.

Kolmogorov Complexity is a measure of descrip-
tive complexity contained in an object. It refers to 
the minimum length of a program such that a uni-
versal computer can generate a specific sequence. A 
good introduction to Kolmogorov Complexity is 
contained in [118] with a solid treatment in [97]. 
Kolmogorov Complexity is related to Shannon 
entropy, in that the expected value of K(x) for a ran-
dom sequence is approximately the entropy of the 
source distribution for the process generating the 
sequence [118]. However, Kolmogorov Complexity 
differs from entropy in that it relates to the specific 
string being considered rather than the source dis-
tribution. Kolmogorov Complexity can be described 
as follows:

Random strings have rather high Kolmogorov 
Complexity – on the order of their length – as pat-
terns cannot be discerned to reduce the size of a 
program generating such a string. On the other 
hand, strings with a large amount of structure have 
fairly low complexity. Universal computers can be 
equated through programs of constant length; thus 
a mapping can be made between universal comput-
ers of different types, and the Kolmogorov Complex-

ity of a given string on two computers differs by 
known or determinable constants. The Kolmogorov 
Complexity K(y|x) of a string y given string x as input 
is described by Definition 6.2: where l(p) represents 
program length p and ϕ is a particular universal 
computer under consideration. Thus, knowledge or 
input of a string x may reduce the complexity or pro-
gram size necessary to produce a new string y.

The major difficulty with Kolmogorov Complexity 
is that it cannot be computed. Any program that 
produces a given string is an upper bound on the 
Kolmogorov Complexity for this string, but the 
lower bound [97] cannot be computed. A best esti-
mate of Kolmogorov Complexity may be useful in 
determining and providing Information Assurance 
due to links between Kolmogorov Complexity and 
information security that will be discussed later. Vari-
ous estimates have been considered, including com-
pressibility, or pseudo-randomness, which measure 
the degree to which strings have patterns or struc-
ture. A new metric that is related to the power spec-
tral density of the sequence auto-correlation is 
introduced in a later section. However, all metrics 
are at best crude estimates. The inability to compute 
Kolmogorov Complexity persists as the major imped-
iment to widespread utilization.

Despite the problems with measurement, Kol-
mogorov Complexity and information assurance are 
related in many ways. Cryptography, for example 
attempts to take strings that have structure and 
make them appear randomly. The quality of a cryp-
tographic system is related to the system’s ability to 
raise the apparent complexity of the string, an idea 
discussed in detail later, while keeping the actual 
complexity of the string relatively the same (within 
the bounds of the encryption algorithm). In other 
words, cryptography achieves its purpose by making 
a string appear to have a high Kolmogorov Com-
plexity through the use of a difficult or impossible to 
guess algorithm or key. Security vulnerabilities may 
also be analyzed from the viewpoint of Kolmogorov 
Complexity. One can even relate insecurity funda-
mentally to the incomputability of Kolmogorov 
Complexity and show why security vulnerabilities 
exist in a network. Vulnerabilities can be thought of 
as the identification of methods to accomplish tasks 
on an information system that are easier than 
intended by the system designer. Essentially the 
designer intends for something to be hard for an 
unauthorized user and the attacker identifies an eas-
ier way of accomplishing this task. Measuring and 

Figure 20.  Evolution of Complexity Caused by Attack and De-
fense. 

26



2.5 Kolmogorov Complexity

keeping track of a metric for Kolmogorov Complex-
ity in an information system provides a method to 
detect such short-circuiting of the intended process. 
Note that the definition of complexity rests upon 
the notion of the Turing Machine, which is also the 
basis of our information assurance model. One 
direction in this research is to combine the defini-
tion of complexity with the definition of vulnerabil-
ity in a fundamental manner. This has been done 
using Brittle Systems and Hypothesis 6.1. Next, Sec-
tion 6.2 examines estimates of Kolmogorov Com-
plexity.

Measures of information complexity
This section looks at proposed estimates of Kolmog-
orov Complexity. The microscopic approach to the 
study of information complexity evolution begins by 
considering the change in complexity of a single 
interaction. Later this report expands the results to a 
larger scale and discusses the results. However, in 
order to make the problem of estimating complexity 
tractable, two approaches are used. The first 
approach is based upon Finite Automata. A Finite 
Automata whose smallest accepted string is the bit-
string whose complexity is to be determined, shown 
in Definition 6.3, is minimized using techniques 
such as  [79,80] where L(FA) is the set of languages 
accepted by the automaton FA and l(FA) is its size.

Figure 21 illustrates the uncompressed represen-

tation of an arbitrary bit-string, 1012. This automa-
ton accepts many other bit-strings in addition to 
1012; however, the size of the minimized automaton 
that accepts that bit-string, based upon the number 

of transitions, for example, is an estimate of the 
complexity of 1012. Thus, minimizing 1012 also min-
imizes other bit-strings such as those formed by the 
regular expression 0*1+0+12 where the * indicates 
zero or more of the preceding symbol and + indi-
cates one or more of the preceding symbol. How-
ever, 1012 is the smallest string accepted by the 
automaton.

The Mathematica function UnionAutomata 
returns an Automaton that is the union of two 
automata. Notice that the complexity of the union 
of two automata is less than the sum of the complex-
ity of each automaton as shown in Figure 22, 

graphed as a function of bit-strings representing the 
base ten integers from 1 to 50. This validates a 
known theorem from complexity theory discussed 
next, namely, that the resulting bit-string complexity 
from a program is less than or equal to the sum of 
the complexity of the input bit-strings, the length of 
the program, and a constant. The complexity of the 
combined bit-strings should be less than the sum of 
the automata complexities plus a constant that is 
dependent upon the size of the Universal Turing 
Machine, sometimes expressed as H(X Y) ≤ H(X) + 
H(Y) + c where H() is the size of the smallest pro-
gram capable of computing a specified result. 
Another way in which to view individual or micro-
scopic interaction is to consider that if a program p 
of length L(p) takes input string x to produce output 
string y, that is, y = p(x), then Definition 6.4 defines 
the microscopic change in complexity where K is the 
Kolmogorov Complexity and c depends upon the 
underlying Universal Turing Machine [137].

Another approach for estimating complexity used 
in this report is based upon compression. The 

Figure 21.  Finite Automation Representation of 1012-. 

Figure 22.  Complexity of Union of Automata versus Sum of 
Complexities. 
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inverse compression ratio, the ratio of the com-
pressed size to the original length, is used as an esti-
mate of the complexity. A highly complex bit-string 
cannot be compressed as much as a low complexity 
bit-string. A plot of automata-based complexity ver-
sus compression-based complexity is shown in 
Figure 23. The compression formulae used is where 

H() is the entropy, n is the bit string length, w is the 
number of one bits, and c is the size in bits needed 
represent the length of the bit-string. Clearly, the 
compression-based mechanism provides a more 
accurate measure of complexity in the Kolmogorov 
sense; however, the automata-based mechanism has 
advantages in that automata provide a simplified 
and convenient mechanism for reasoning about 
computation at the microscopic level.

As previously discussed, due to its non-comput-
able nature, estimates of K(x) are difficult. Numer-
ous techniques for estimating K(x) are discussed in 
[97]. The task of estimating K is related to the task 
of assessing string structure. We now introduce a 
new primitive approach to this related issue based 
on the power spectral density of a string’s auto-cor-
relation. This approach highlights the ability to gain 
knowledge of K(x) without any higher knowledge 
about the system producing string x or the meaning 
of the information.

Recognizing that the complexity of a binary 
string may be defined in many ways. A useful com-
plexity measure may be related to properties of the 
string’s non-cyclic auto-correlation. Specifically, 
given an n-bit binary string, S, where

(1)
and

(2)

define the non-cyclic auto-correlation, R, as 
(3)

where

(4)

From R, calculate the sequence’s non-negative 
power spectral density, Φi, by multiplying the Fou-
rier transform of R by its conjugate. The measure for 
binary string complexity that is formed is denoted by 
Ψ and is defined as

(5)

The motivation to this approach is found in the 
rich and venerable field of synchronization 
sequence design. Sequences that have an auto-corre-
lation whose side-lobes are of very low magnitude 
provide good defense against ambiguity in time 
localization. Such an auto-correlation function will 
approximate a “thumbtack” and its Fourier trans-
form will approximate that of band-limited white 
noise.

The authors of this report expect that Ψ will be of 
utility in assessing complexity as it relates to the com-
pressibility of a binary string. To begin the testing of 
this hypothesis, we generated strings from the 
Markov process diagrammed in Figure 24.

A series of binary sequences of 8000 bits was gen-
erated; each for different values of p. Ψ was com-
puted for each of these strings and also packed into 
1000-kilobyte files. These were subjected to the 
UNIX compress routine. The Inverse Compression 
Ratio (ICR) was computed which is the size of the 
compressed file normalized to its uncompressed 
size, 1000 kilobytes in these cases. The hypothesis is 
that Ψ and the ICR should vary in a similar manner 
and that Ψ might be a useful measure of sequence 
compressibility and hence complexity. The graph in 
Figure 25 following seems to endorse this hypothesis 
and further research is motivated.

The above results show that fundamental parame-
ters such as power spectral density of sequence auto-

Figure 23.  Automata and Compression-Based Measures of 
Complexity. 
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cor relation and compressibility are related and fol-
low similar trends. These fundamental metrics are 
possible candidates for measuring trend of increase 
or decrease in K(x). However, also illustrated by 
these results (the unequal rate of change between 
the two metrics) are the loose bounds within which 
estimates of K(x) are related. Other methods of esti-
mating K(x) are described in [97]. In the next sec-
tion we introduce a method for attacking the issue 
of loose bounds in order to make complexity metrics 
useful for the purposes of assessing and providing 
information assurance.

Since it is not computable, few applications exist 
for Kolmogorov Complexity. One growing applica-
tion is a statistical technique with strong links to 
information theory known as Minimum Message 
Length (MML) coding [143]. MML coding encodes 
information as a hypothesis that identifies the pre-
sumptive distribution, from which data originated, 
appended with a string of data, coded in an optimal 
way. The length of an MML message is determined 
as follows: #M = #H + #D, where #M is the message 
length, #H is the length of the specification of the 
hypothesis regarding the data, and #D is the length 
of the data, encoded in an optimal manner given 
hypothesis H. As discussed in [143], MML coding 
approaches the Kolmogorov Complexity or actual 
bound on the minimum length required for repre-
senting a string of data. 

Process vs. data complexity
Complexity can be applied to the problem of infor-
mation assurance in two ways. As discussed above, 
conservation of apparent complexity may enable 
detecting and correcting abnormal behavior. 
Another method of using apparent complexity for 

information assurance is in the identification of 
weak areas or vulnerabilities in the system. Consider 
the postulate that the more apparently complex the 
data, the more difficult for an attacker to under-
stand the data and exploit the system. Thus, the 
more apparently complex, the less vulnerable it is 
and vice versa. One proposed metric for vulnerabil-
ity relates to evaluating the apparent complexity of 
the concatenated input and output K(X.Y). This 
relates to the joint complexity of the data input and 
output from a certain process (Black Box). The 
lower the complexity of K(X.Y) the easier the data is 
for an attacker to understand; thus we will regard 
K(X.Y) as a measure of data vulnerability. A compet-
ing metric is the relative complexity K(Y|X) of the 
process. This is the “work” done on the information 
by the process, or the complexity added or removed 
from X to produce Y. Thus, K(Y|X) is a measure of 
process vulnerability. The relationship among this 
set of complexity metrics and the black box process 
is shown in Figure 26.

Data vulnerability relates to how vulnerable a sys-
tem is to an attacker knowing information. This type 
is perhaps best measured by K(X.Y), where the 
cumulative complexity of input and output data is 
observed to measure the difficulty an attacker would 
face in decrypting or identifying messages contained 

Figure 25.  Variation of Psi and ICR with p. 

Figure 26.  Process versus Data Vulnerabilities. 
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in input and output. For example, hopefully 
K(encrypted message) appears much greater than 
K(decrypted message) to the casual observer and is 
only recognized to be on the order of K(decrypted 
message) to an authorized user with the correct key 
after the decryption algorithm has been run.

Process vulnerability relates a system’s susceptibil-
ity to an attacker understanding the processes that 
manipulate information. This vulnerability is best 
quantified by the complexity injected or removed 
from the data by the process at work. For example, a 
copy or pass through process adds little complexity, 
K(Y|X) is zero. But if encrypted data is sent through 
the copy process, K(X.Y) will be high. The attacker 
will be unable to discern the messages that are sent, 
but can learn to perhaps simulate this particular 
black box quite effectively. Whereas if plain text data 
is sent through the copy process K(X.Y) will be low, 
and in addition to understanding the process at 
work, and attacker may be able to know the particu-
lar messages that are sent. Both vulnerabilities are 
undesirable and represent two different dimensions 
of vulnerability to be avoided. To make systems 
secure one must maximize both process and data 
complexity to a non-authorized user while keeping 
the systems simple to authorized users. Proper 
accounting of K(Y|X) and K(X.Y) throughout the 
system will enable both identification of weak areas 
as well as identification of foul play through the con-
servation principles discussed earlier.

Vulnerability reduction by means of system 
optimization
In this section we discuss issues related to system 
optimization that can be achieved through Kolmog-
orov complexity and various tradeoffs. Compression 
and security are strongly linked in that they are 
bounded optimally by the most random sequence 
that can be produced. But smallest program size is 
not the only or even most important performance 
metric. Execution time must also be considered. 
The tradeoff is indicated in Figure 27.

Through the use of active network techniques [3] 
the tradeoff indicated may be dynamically addressed 
using a concept called Active Packet Morphing for 
network optimization. As shown in Figure 28, by 
changing the form of information from data to code 
as information flows through, a system can optimize 
CPU resources, and bandwidth resources. This idea 
can be extended to optimize or prevent adverse 
effects from critical resources in addition to band-

width and CPU. Memory, time of execution or 
buffer space could be use to trade off forms of data 
representation to optimize certain system parame-
ters. The ability of data to change form within a sys-
tem opens up multiple optimization paths that were 
previously invariant in the system. Rigorous security 
quantification resulting from this work allows active 
packets to morph by adding the required security 
overhead along specific communication links such 
that the security of the link along with the security of 
the morphed packet yield the proper level of secu-
rity required by a given policy. Thus, security over-
head is minimized.

Another parameter that can optimize system 
resources is the knowledge of how a piece of data is 
used. MP3 audio is a good example of how leaving 
out information (specifically that which is undetect-
able by the human ear) can optimize data size. We 
introduce here the idea of “necessary” data to aug-
ment the idea of “sufficient” data or sufficient statis-
tics that represent all information contained in the 

Figure 27.  Program size versus Speed Tradeoffs. 

Figure 28.  Active Packet Morphing for Network Optimization. 
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original data. Sufficient representation of data con-
tains all the information that the source data con-
tains. Necessary data contains only the information 
that the source data contains that the destination 
instrument can effectively use. If you efficiently 
encapsulate all the information in source data in a 
statistical parameter you may have achieved a mini-
mum sufficient statistic. If you further reduce this 
statistic such that you encapsulate only the informa-
tion that is usable by the end node, you have 
obtained the minimal necessary sufficient statistic. 
Thus, Kolmogorov Complexity related ideas have 
tremendous impact for system optimization as well 
as security. 

Apparent complexity
The results in Section 6.2 give an upper bound on 
complexity increase due to computational opera-
tions, but perhaps one can do better. In fact, the size 
of the shortest program one can find to produce a 
particular string is the best estimate for K(x). Since 
Kolmogorov Complexity is unknowable, the best 
that we can do is estimate well. This introduces the 
idea of apparent complexity. It is as if to say “As far as 
I know, the complexity of this string is this.” The 
benefit or possible way to exploit the idea of appar-
ent complexity is that a user generating a string 
should have the best idea of how hard it is to gener-
ate the string. There are many reasons why a user 
may not choose to generate a string using the mini-
mal size program. Perhaps a longer program can 
execute faster, or perhaps the generator is unknow-
ingly using an inefficient process. However, the gen-
erator of a string of data is presumed to have 
knowledge of the process used to generate that data. 
This may in fact make the non-computability of Kol-
mogorov Complexity an asset: a good candidate for 
use in providing information assurance. The infor-
mation system designer or an authorized user gener-
ating data should have better knowledge of the data 
process than an attacker and an attacker cannot sim-
ply compute the optimal process. Conservation of 
apparent complexity enables abnormalities to be 
tracked when the expected number of computa-
tional operations is not utilized in transforming 
string x into string y. Thus, even if we cannot know 
or compute the most efficient process for creating a 
string of data, we can at least gain benefit from 
ensuring through monitoring resources that the 
expected process is used. This type of assurance has 
in fact been used informally to detect network secu-

rity problems for many years. Discrepancies in com-
puter account charges have led to detection of 
attack [122]. The idea of using Kolmogorov Com-
plexity provides the possibility of using this type of 
technique on a more fundamental level, where 
knowledge about the information content would not 
be required to determine unauthorized activity. The 
term “apparent complexity” is used to reflect the 
best measurement of Kolmogorov complexity avail-
able to the party undertaking the measurement.

This section addresses the question of how vul-
nerability relates to complexity and how this leads to 
the definition of a new metric called apparent com-
plexity, AK. Figure 29 is another view of the opera-

tion of the system in Figure 8. In Figure 29, system 
operation, as designed by the defender, is shown as 
the state machine inside the smaller box in the fore-
ground. Data of a given complexity flows in and out 
of the system as shown by the arrows. However, the 
main source of vulnerability is unknown or unex-
pected behavior that leads to unauthorized access of 
information as shown in the empty large box in the 
background.

Referring to our definition of attacker as scientist, 
the attacker can be conceptualized as developing 
and experimentally validating hypotheses regarding 
operation of the system that will lead to access to 
desired information. As previously discussed, the 
better the hypothesis, the less random, or more com-
pact, the string representing the behavior of the sys-
tem is required. Kolmogorov Complexity, K, is a 
measure of the smallest programmatic representa-
tion for a string that can ultimately be conceived. As 
the size of the attacker’s representation of the string 
formed by observed behavior approaches K in con-
structing a hypothesis of system operation, the bet-
ter understood the system is to the attacker. 
However, actually computing K is a challenge cur-
rently out of reach. Instead, a more tractable substi-
tute is proposed called Apparent Complexity, as 

Figure 29.  Vulnerability as Unknown Behavior. 

31



 2. Discussion

shown in Definition 6.5. The salient feature of this 
definition is that, while similar to K(x), is relative. It 
is relative in this definition to the capability of a user, 
r, to define the smallest program.

In this definition, if, then r has an unreasonable 
hypothesis, a hypothesis that does not contribute to 
an understanding of the system. If, then r has found 
a hypothesis that perfectly explains system behavior. 
Thus, it is reasonable to expect to lie in the range 
between {K…l(x)}. Note that r can be an individual, 
such as a single attacker or single defender, or a 
group with a common view of complexity. In fact, a 
group of individuals could converge to a common by 
means of a protocol similar to a routing protocol.

The string x in this application is a list of events by 
an observer external to the system, for example, the 
attacker or the defender. Initially the defender is 
likely to best understand the system. The complexity 
of the system, AK in Figure 29, is itself a measure of 
the defender’s. This is because the defender’s goal is 
usually to develop the most efficient system possible. 
Thus, the system is in effect the defender’s best 
approximation of K with respect to generating out-
put; in other words,. is likely to be near l(x) initially. 
Note that the attacker is likely to have, at minimum, 
general knowledge of such areas as login procedures 
and possible error conditions such as queue over-
flows, and will be likely to test limit points where sys-
tems interconnect as being weak links. A defender 
can compute, but how is determined? One method 
is for the defender to determine all externally 
observable points, and attempt to compute. The 
accuracy of this approximation depends upon the 
defender’s knowledge of all the externally observ-
able points. The accuracy also depends on the 
defender’s knowledge being equal or better than the 
attacker’s.

Conservation of complexity
Conserved variables enable us to deduce parameters 
from the presence or absence of other parameters. 
The Law of Conservation of Matter and Energy 
[127], for example, allows one to deduce how well a 
thermodynamic system is functioning without know-
ing every parameter in the system. Heat gain in one 
part of the system was either produced by some pro-
cess or traveled from (and was lost from) another 
part of the system. One knows that if the thermal 
efficiency of a thermodynamic system falls below cer-
tain thresholds then there is problem. On the other 
hand, if more heat is produced by a system than 

expected, some unintended process is at work. A 
similar situation is desirable for information sys-
tems—the ability to detect lack of assurance by the 
presence of something unexpected, or the absence 
of something that is expected. This seems to be far 
from our reach, given that information is easily cre-
ated and destroyed with little residual evidence or 
impact.

One possible candidate for a conserved variable 
in an information system is Kolmogorov Complexity. 
Suppose you could easily know the exact Kolmog-
orov Complexity K(x) of a string of data, x. You 
would essentially have a conserved parameter that 
could be used to detect, resolve or infer events that 
occur in the system, just as tracking heat in a ther-
modynamic system enables monitoring of that sys-
tem. Operations that affect string S and cause it to 
gain or lose complexity can be accounted for, and an 
expected change in complexity should be resolvable 
with the known (secured) operations occurring in 
the information system to produce expected 
changes in complexity. Complexity changes that 
occur in a system that cannot be accounted for by 
known system operations are indications of unautho-
rized processes taking place. Thus, in the ideal case 
where Kolmogorov Complexity is known, a check 
and balance on an information system that enables 
assurance of proper operation and detection of 
unauthorized activity is possible. Unfortunately, as 
previously discussed, a precise measure of Kolmog-
orov Complexity is not computable. We can, how-
ever, determine a bound on the Kolmogorov 
Complexity as shown in the theorems below.

Theorems of conservation
Kolmogorov Complexity, K(x), can be thought of as 
a conserved variable that changes through computa-
tional operations conducted upon strings. In order 
for K(x) to be a conserved variable we must be able 
to account for changes in K(x), which must be corre-
lated with another known value. Theorems 6.1 and 
6.2 presented below enable bounds to be placed on 
the changes in K(x) that occur due to computational 
operations occurring in an information system. The 
two theorems below show bounds on the amount of 
complexity that can exist due to knowledge of other 
strings or conducting computational operations.

While not computable from below, upper bounds 
on the increase in Kolmogorov Complexity can be 
crudely known by keeping track of the size of pro-
grams that affect data. This bound may be incredibly 
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loose, as it is quite possible to operate on a string 
and make it much less complex than the input. One 
would need a method to recognize this simplifica-
tion. However, these results provide an intuitively 
attractive method for quantifying the “work” per-
formed by a computational operation on informa-
tion – the change in complexity introduced by the 
operation. A thorough treatment of bounds related 
to K(y|x) and the “Information Distance” between 
strings is contained in Bennett et al. [122].

2.6 COMPLEXITY ESTIMATION ALGORITHMS 
FOR INFORMATION ASSURANCE

In order to motivate the study of complexity estima-
tors for information assurance, this section will high-
light recent results using complexity to detect FTP 
exploits [97] and Distributed Denial of Service 
(DDoS) attacks [118]. General principle and con-
cepts of complexity based vulnerability analysis will 
also be discussed, providing further potential infor-
mation security applications of complexity estima-
tors.

Detection of FTP exploits using protocol 
header information
In [97], the use of the principle of conservation of 
complexity to detect anomalous use of the FTP pro-
tocol for intrusion detection is presented. Protocols 
enforce patterns by design, and the level of redun-
dancy or patterns in protocol information, which 
can be measured through complexity metrics, was 
hypothesized to be an objective indication of attack 
vs. healthy behavior. Here complexity is estimated 
using Unix compress—a universal compression algo-
rithm based on Lempel Ziv 78. TCP dump data from 
FTP control connections, filtered to remove certain 
high variance fields such as time stamps, was com-
pressed using Unix compress and compared to trace 
files of healthy sessions. Results, summarized in 
Figure 30, indicate that attack sessions, obtained 
from running various FTP exploit scripts down-
loaded from numerous Internet sites, have measur-
ably lower complexity (when normalized against 
trace length) than healthy FTP sessions. 

These results indicate that the principle of con-
servation of complexity applied to FTP exploits 
enables detection of inappropriate or unhealthy use 

of the FTP protocol. These concepts are summa-
rized in Figure 31. 

The FTP protocol specification, RFC 959, 
enforces and enables a certain set of behaviors that 
results from the rules and specifications of the pro-
tocol being exercised by the allowable space of user 
inputs. The large Space of Models shown in the fig-
ure indicates this set of behaviors or models. Ideally, 
the allowable space of models would be calculated 
from the protocol specifications, resulting in a space 
of models consisting of finite state machines, push-
down automata, or whatever modeling device 
achieves the Kolmogorov Complexity for the partic-
ular behavior. Among this set of models would be 
models corresponding to healthy behaviors and 
models corresponding to attack behaviors. The 

Figure 30.  Inverse Compression Ratio of Filtered FTP Ses-
sion Trace Files For Attacks and Healthy Sessions. 

Figure 31.  Conservation of Complexity Applied to FTP Exploits. 
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results in indicate that the complexity of the TCP 
dump header information, which can be interpreted 
as an objective measure of the size model repre-
sented by the data, indicates that attack behaviors 
(when normalized by session size) tend to be less 
intricate or smaller models than normal healthy ses-
sions, thus enabling detection of exploits through 
complexity estimators. Further research is in 
progress to expand upon these results, but clearly 
better complexity estimators will benefit character-
ization of behavior models and the ability to discern 
attacks.

Detection of DDOS using differential 
complexity of data payload
 Distributed denial-of-service (DDoS) attacks are 
caused by an attacker flooding the target machine 
with a torrent of packets originating from a number 
of machines under the attacker’s control. These 
machines are called ‘zombies’. Tools that control 
and launch attacks from these zombies against the 
target perform the attacks. The attacks can cause 
networks to be disabled for extended periods of 
time during which customers, employees, and busi-
ness partners, are unable to access information or 
perform transactions. This section describes an 
approach that leverages fundamentals of informa-
tion complexity to provide a flexible and effective 
method for detection of distributed denial of service 
attacks. Stated as simply and succinctly as possible, 
we hypothesize that information, comprising obser-
vations of actions with a single root cause, whether 
they are faults or attacks, is highly correlated. Highly 
correlated data has a high compression ratio.

The DDoS attack detection algorithm makes use 
of a fundamental theorem of Kolmogorov Complex-
ity that states: for any two random strings X and Y,  
K(XY) ≤ K(X) + K(Y) + C where K(X) and K(Y) are the 
complexities of the respective strings, c is a constant 
and K(X.Y) is the joint complexity of the concatena-
tion of the strings. Proof for the above theorem is 
described in [161]. Simply put, the joint Kolmog-
orov Complexity of two strings is less than or equal 
to the sum of the complexities of the individual 
strings. The equivalence holds when the two strings 
X and Y are completely random i.e. they are totally 
unrelated to each other. Another effect of this rela-

tionship is that the joint complexity of the strings 
decreases as the correlation between the strings 
increases. Intuitively, if two strings are related, they 
share common characteristics and thus common 
patterns. That knowledge can be harnessed to gen-
erate a smaller program that can represent the com-
bined string.

In terms of detection of DDoS attacks, the prop-
erty given by Inequality (1) is exploited to distin-
guish between concerted denial-of-service attacks 
and cases of traffic overload. The assumption is that 
an attacker performs an attack using large numbers 
of similar packets (in terms of their type, destination 
address, execution pattern, timing, etc.) sourced 
from different locations but intended for the same 
destination. Thus, there is a high degree of similarity 
in the traffic pattern. A Kolmogorov Complexity 
based detection algorithm can quickly identify such 
a pattern. On the other hand, a case of legitimate 
traffic overload in the network tends to have many 
different traffic types. There is not much correlation 
between the different traffic flows and, in aggregate, 
the traffic appear to have a random pattern. There-
fore, our algorithm samples every distinct flow of 
packets (distinguished by their source and destina-
tion addresses) to determine if there is a large 
amount of correlation between the packets in a flow. 
If it is determined to be so, then all suspicious flows 
at the node are again correlated with each other to 
determine that it is indeed an attack and not a case 
of a traffic overload.

The correlation itself is performed in the follow-
ing manner. For the collected samples, the probe 
calculates a complexity differential over the samples. 
Complexity differential is defined as the difference 
between the cumulative complexities of individual 
packets and the total complexity computed when 
those packets are concatenated to form a single 
packet. If packets x1, x2, x3…xn have complexities 
K(x1), K(x2), K(x3)… K(xn), then the complexity 
differential is computed as:

where K(x1x2x3…xn) is the complexity of the packets 
concatenated together as measured in a finite time 

K x1( ) K x2( ) � K xn( )+ + +[ ] K x1x2�xn( )–
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interval window (Figure 32). If packets x1, x2, x3…xn 

are completely random, K(x1x2x3…xn) will be equal 
to the sum of the individual complexities and the 
complexity differential will therefore be zero. How-
ever, if the packets are highly correlated i.e. some 
pattern emerges in their concatenation, then the 
concatenated packet can be represented by a 
smaller program and hence its complexity i.e. 
K(x1x2x3…xn) will be smaller than the cumulative 
complexity.

We compared our technique to a prototype 
packet counting algorithm for DDoS detection and 
found that our technique is better at discriminating 
traffic patterns. The experimental setup consisted of 
a set of active nodes arranged in the topology shown 
in. Node AH-1 continuously generates traffic consist-
ing of audio packets destined for node AN-2. The 
load induced by this traffic is high enough that it is 
registered at node AN-1 as a ‘suspicious’ flow i.e., a 
traffic flow whose complexity differential exceeds 
the threshold. The load induced by this traffic flow 
is kept constant throughout the experiment. Node 
AH-2 generates the attack flow. The load induced by 
the attack flow is varied to determine the perfor-
mance of the algorithms. The experiment is run 
twice, once with only the attack source on (node AH-
2 transmitting only) and the next time with both 
sources on (both node AH-1 and node AH-2 trans-
mitting). The rationale is that an attack is essentially 
a sustained overload induced for some time interval. 
The purpose of the experiment is to determine the 
effectiveness of the two techniques in separating and 
identifying an attack in the presence of background 
traffic

Figure 32 and Figure 33 show the performance of 
the packet-counting and complexity-based 

approaches, respectively as measured against the 
load induced by the two sources (in packets per sec-
ond) described above. Figure 33 shows that the 

packet-counting metric cannot discriminate 
between an attack and a true overload. When the 
audio source is transmitting in conjunction with the 
attack source, any threshold set by the packet-count-
ing algorithm running on node AN-1 will be 
exceeded leading to the false conclusion that the 
node is under attack. For example, based on the 
attack pattern only (dashed curve), we decide to set 
the threshold at 70 packets/s for a load of 0.6. When 
the audio source is introduced, the combined traffic 
trips the same threshold at a load of only 0.4, which 
is a false positive. 

Figure 33 shows the complexity differential versus 
load curve for a given sampled time interval, which 
in this case was 10 seconds. Note that higher differ-
ential complexity corresponds to reduced complex-
ity of the flow. In effect, the higher differential 
complexity estimates the deviation from the ran-
domness inherent in a healthy network with a mix of 
different traffic flows. The experiment thus shows 
that the attack flow is estimated to be less complex 
over time than the ambient legitimate traffic. It is to 
be noted that the complexity-based metric does not 
change its behavior when a combination of attack 
and traffic sources is used. This is because the attack 
traffic dominates the combined flow and hence the 
complexity differential is roughly equal to that 
observed if only the attack flow existed. Therefore, 
the complexity-based approach is more accurate in 
separating false alarms from true attacks because it 

Figure 32.  Topology of the experiment. 

Figure 33.  Performance of packet counting metric. 
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can conser ve salient patterns of a traffic flow 
(Figure 34).

Complexity-based vulnerability analysis
Complexity-based vulnerability analysis attempts to 
determine the likelihood of attack innovation. An 
attacker initially views a system as a black box. The 
attacker must form hypotheses about the system and 
test those hypotheses to successfully prosecute an 
attack. The hypothesis suggested by complexity-
based vulnerability analysis is that less complex com-
ponents of the system will be easier to understand, 
quicker to be manipulated, and are therefore more 
vulnerable. The ability of an attacker to understand, 
and thus successfully innovate a new attack against a 
system component is directly related to the size of 
the minimal description of that component.

A common criticism of complexity-based vulnera-
bility analysis is that components that are more com-
plex could be vulnerable for precisely the same 
reason; namely, the defender does not fully under-
stand high complexity components, thus leaving 
potential vulnerabilities. However, even in this cir-
cumstance, the fundamental hypothesis remains 
valid, the attacker must understand components 
well enough to manipulate them; it is the likelihood 
of understanding component manipulation well-
enough by the attacker that remains the object of 
complexity-based vulnerability analysis. In fact, the 

Internet Protocol suite, which claims simplicity as 
one of its virtues, is a popular target of attack; sim-
plicity (the colloquial use of the term is used here 
because the Internet Protocol suite lacks a definition 
of simplicity) has not appeared to reduce its vulnera-
bility. 

The technique used by the attacker can be 
broadly defined as an attempt to move the system 
into a state unanticipated at system design time. For 
purposes of simplification, consider the system as 
described by a finite automata (FA) in a black box. 
The attacker can input data to the FA and receive 
output. The attacker can use patterns in the 
input/output data to deduce information about the 
system. The complexity-based vulnerability hypothe-
sis can be restated more precisely as: lower complex-
ity components of the system, from the attacker’s 
point of view, that move the system into a state unan-
ticipated in system design, will be deduced sooner.

The complexity-based vulnerability hypothesis is a 
meta-hypothesis because it is a hypothesis involving 
an attacker’s hypotheses. The meta-hypothesis must 
be validated by experimentation. An ideal experi-
ment, assuming careful setup and control is pre-
sented in[109]. The use of complexity metrics for 
vulnerability analysis is, along with the applications 
discussed above, one of the possible objective uses of 
complexity theory that will benefit from accurate 
and low overhead complexity metrics, which is the 
subject of this report. 

Methods of estimating complexity
The previous section identifies two methods for esti-
mating complexity – empirical entropy and universal 
compression algorithms. Both metrics are related to 
Kolmogorov Complexity, in that K(x) is the ultimate 
compression bound for a given finite string x. Thus 
any universal compression algorithm is a natural 
choice for a complexity estimator. However, since 
universal compression algorithms are designed to 
apply to populations of strings, the ultimate com-
pression bound for a specific string is generally 
smaller than that achieved by a universal compres-
sor. 

Figure 34.  Performance of complexity-based metric. 
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Figure 35 describes how the quality of complexity 

estimator is tied to the computational model consid-
ered in estimating complexity. Simple estimates, 
such as empirical entropy lie at the bottom of 
Figure 35 and can be implemented using very sim-
ple computational platforms with very little over-
head. Popular universal compression algorithms can 
be implemented with context free grammars (finite 
automata) and provide additional accuracy in com-
plexity estimation at additional computational 
expense. Kolmogorov complexity is the theoretical 
limit for complexity estimation that requires compu-
tational capability equal to that of a universal Turing 
machine on which anything computable can be 
computed. Due to the halting problem in searching 
for the theoretical limit for a specific string (we can-
not determine if a candidate compressor will ever 
halt) the theoretical bound cannot be achieved One 
example of a universal compression algorithm is the 
universal compression algorithm designed by Lem-
pel and Ziv which is known as LZ78 [183]. The LZ78 
algorithm partitions a string into prefixes that it 
hasn’t seen before, forming a codebook that will 

enable long strings to be encoded with small indexes 
(Figure 36). 

Consider an example to illustrate how this algo-
rithm works: LZ partitioning of the string:

1011010010011010010011101001001100010

is performed by inserting commas each time a 
sub-string that has not yet been identified is seen. 
The following partition results:

1,0,11,01,00,10,011,010,0100,111,01001,001,100,010

Figure 36 represents this string partition as a 
binary tree. The nodes marked in black of the five 
level tree shown are nodes contained in the LZ78 
partition of the example string. Nodes that are not 
filled in indicate code words or phrases that are not 
contained in the LZ78 partition. Each node or 
phrase occurs exactly once in the string with the 
exception of the last phrase which may be a repeat 
of a previously seen node. Good compression (low 
complexity estimation) results when the LZ78 parti-
tion contains a deep, sparse tree, while poor com-
pression (high complexity estimation) results from 
strings that are less deep and more completely popu-
lated at each level

A comparison of ubiquitous complexity 
estimators
This section compares the performance of the com-
plexity estimators used in our work so far, viz. empir-
ical entropy, Zlib-compress and LZ78-code-length 
estimator.

Empirical entropy estimation technique measures 
the weight of ‘1’s that occur in a binary string in rela-
tion to the length of the string. Thus a string with a 

Figure 35.  Hierarchy of computational platforms in estimat-
ing complexity. 

Figure 36.  LZ78 binary tree representation of the partition for 
the binary string: 1011010010011010010011101001001100010. 
Nodes contained in the partition are colored in black. 
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higher number of 1’s is estimated to have a higher 
complexity as compared to a string of the same 
length with a lower number of 1’s. This estimation 
technique is computationally simple and fast but not 
very accurate.

Zlib-compress uses the java.util.zip.Deflater class 
found in the Java compression library [184]. Attacks 
using Kolmogorov Complexity Metrics. The inverse 
compression ratio is estimated to the complexity of 
the string using this method. This universal com-
pression algorithm utilizes LZ77 coupled with Huff-
man coding.

The LZ-code-length estimation method attempts 
to guess at the amount of compression possible for a 
string using the LZ78 compression algorithm with-
out actually performing it. The three estimators 
were compared for accuracy by conducting the fol-
lowing experiment. A byte buffer was filled with par-
titioned into two, one of which was filled with 
patterned data (i.e., data having a known pattern) 
and the other part was filled with random data. The 
estimators were run on the buffer to get a complex-
ity value for each estimator. The ratio of the random 
data to the pattern data in the buffer was increased 
in each successive run set. Thus the first set had all 
pattern data in the buffer (and thus low complexity) 
while the final set had all random data (and thus 
high complexity). The pattern in the patterned data 
was varied to prevent bias and the average complex-
ity value was chosen for each set.

Figure 37 shows a comparison of the three estima-
tors. Zlib-compress has a linear change in complex-

ity as the ratio of non-pattern data to pattern data 
increases and is the most accurate of the three esti-
mators. LZ-encode is seen to overestimate the com-
plexity of the data with respect to Zlib-compress 
throughout the range of the experiment. Empirical 
entropy is seen to be the least accurate over the 
range. It grossly overestimates the complexity when 
there is more pattern data in the buffer because it is 
simply counting the weight of the 1’s in the string 
instead of looking for patterns.

Figure 38 shows the variance of the estimated val-

ues over the range of the experiment. Zlib-compress 
can be seen to be least sensitive to the type of pat-
tern data used. Empirical entropy estimation vari-
ance is highest when different patterns are used for 
the same ratio of random to pattern data. This is 
because the count of 1’s in the pattern data affects 
the estimation value. On the other hand, when the 
data is more random, the ratio of 1’s is expected to 
be remain close to 0.5.

Minimum description length principles 
The previous section identifies the challenges in 
dealing with variance and accuracy of complexity 
estimators. We will now address a related concept 
which will be used to build a new complexity estima-
tion algorithm Two statistical application techniques 
for inductive inference that are quite similar to the 
Kolmogorov Complexity, and with strong links to 
information theory are known as Minimum Message 
Length (MML) coding and Minimum Description 
length (MDL) coding [181]. For our purposes these 
techniques are equivalent and will be used inter-Figure 37.  Complexity estimate in bits vs. randomness of data. 

Figure 38.  Complexity estimation variance vs. randomness 
of data. 
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2.6 Complexity Estimation Algorithms for Information Assurance

changeably. MML coding encodes information as a 
hypothesis or model that identifies the presumptive 
distribution, from which data originated, appended 
with a string of data, coded in an optimal way. The 
total descriptive constant C of a string under the 
concepts of MML or MDL string can be defined in 
two parts as C = M + D, where M is the model cost 
and D is the data cost. In the preferred two-part 
description the model M describes all regularity 
associated with a string and the data portion D 
describes the random elements of the string where 
the sum of the lengths of these two parts is equal to 
the Kolmogorov complexity of the string. In other 
words, the best two-part description of the data 
should not be longer than the optimal single part 
description of the data. A two-part description is 
known to exist if only consisting of a set containing a 
single string. There are generally many two-part 
descriptions of a string, the shortest being termed 
the algorithmic minimum sufficient statistic. A thor-
ough treatment of algorithmic statistics for the class 
of models consisting of finite sets and probability dis-
tributions is contained in [172].

Sophistication
One criticism of the use of Kolmogorov Complexity 
for characterization of information is that it is in 
some sense a measure of randomness. Random 
information is not necessarily important informa-
tion. This criticism can be addressed by thinking of 
Kolmogorov complexity as two parts. Sophistication 
is a measure of meaningful information that was for-
malized in [183], harnessing the fact that the short-
est description of an object (with length equal to 
Kolmogorov Complexity) can be expressed in two 
parts. The first part describes a Turing machine that, 
given the second part as input, produces a given 
string. The first part of the code models the regular-
ities of the string, while the second part describes 
the irregularities. The combination of model and 
code that construct a string must together be the 
smallest under the Minimum Description Length 
criteria. Vitányi in [183] expands the model space to 
include not just finite sets but also any computable 
model in the recursive function class. The relation-

ships between Sophistication and Kolmogorov Com-
plexity are shown in Figure 39.

The motivation for studying sophistication is 
rooted in a search for a method to quantify “mean-
ingful information”. In an attempt to rigorously 
define the normally subjective notion of “meaning”, 
Vitányi associates the model with the meaningful 
information involved in the string, while the second 
part of the code is the meaningless part. For exam-
ple, a purely random string of length L has Kolmog-
orov Complexity on the order of L. We could 
compare this to a string taken from a piece of 
English text that has Kolmogorov Complexity of L 
(the uncompressed string would have length much 
larger than L). Even though these two strings have 
similar complexity, there are large differences 
between their two-part codes. The random string has 
no model associated with it and is essentially all data. 
The English text will conform to some model associ-
ated with the frequency of use of letters, words and 
phrases. If the author of the text is known, a better 
model tuned to the writer’s vocabulary is possible. 
Thus, minimal two-part code of the sample of 
English text will consist of a fair amount of model in 
addition to data encoded under the model. Thus 
the English text sample would be considered more 
sophisticated than the random data even though 
they are equally complex.

A new complexity and sophistication 
estimation algorithm
Sophistication motivates the search for new com-
plexity and sophistication metrics that not only indi-
cate the compressibility or randomness of a given 
string, but also indicate information about the size 
of the model that could produce the string. Univer-
sal compression algorithms are not designed to do 
this, since their ultimate goal is to produce a one 

Figure 39.  Comparison of sophistication and Kolmogorov 
Complexity. 
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 2. Discussion

part encoded version of a string that can be recon-
structed into the string at will. In this section, we 
derive a heuristic that will lead to a new universal 
sophistication and complexity estimator that forms a 
two-part code for a given string.

 We consider compression of a finite binary string 
X of length L. We seek the optimal partition of X 
into I symbols that can be encoded using a near opti-
mal encoding strategy such as Huffman coding such 
that the combination of the descriptive cost of the 
model plus the encoding of the data under the 
model are minimized. The following parameters are 
defined:

The effect of a partition on MML
 The entropy of a distribution of symbols (Hs) 
defines the average per symbol compression bound 
in bits per symbol for a prefix free code. For a distri-
bution p of I symbols: 

Huffman coding and other strategies can pro-
duce an instantaneous code approaching the 
entropy when the distribution p is known. But what 
is the best encoding possible when the source distri-

bution is not known? One way to proceed is to mea-
sure the empirical entropy of the string, that is the 
entropy defined inherently by the input string itself. 
However, empirical entropy is a function of the par-
tition and depends on what sub-strings are grouped 
together to be considered symbols. See for a consid-
eration of some of the inadequacies of the well-
known Lempel-Ziv algorithms in dealing with higher 
order empirical entropies.   

 Our goal is to optimize the partition (the num-
ber of symbols, their length, and distribution) of a 
string such that the compression bound for an 
instantaneous code, which is equal to R*Hs, plus the 
codebook size is minimized according to the MML 
criteria. We estimate the codebook size (model 
descriptive cost M) to be the sum of the lengths of 
unique symbols:

Thus we estimate the total descriptive cost Cp:

Cp = M + R ⋅ Hs

Consider for now that all symbols are equally 
likely and of equal length. Thus:

describes how entropy changes as unique symbols 
are added to the partition; each added symbol 
increasing the number of bits required to encode 
each symbol in a less than linear fashion. This 
increased descriptive cost per symbol must be traded 
against symbol length and number of repetitions. 

 For a given number of unique symbols, more rep-
etitions will at first tend to decrease the overall 
description length, since the fixed length string of 
size L will now be divided into shorter words of size l 
and the codebook for the string will now be shorter 
to describe. 

The description length decreases (the reduction 
in model size dominates) until a minimum occurs 
where the benefit from a decreased codebook size is 
offset by the fact that more symbols of a fixed aver-
age encoded length (on the order of Hs) must be 
appended to the description. Figure 31 plots 
description length vs. number of repeats for various 
size equally likely alphabets based on a 1024 bit 
string. The knee in the curve for each number of 
symbols represents the optimal number of repeti-
tions for a certain symbol alphabet size. 

Table 3 Table 1: OSCR parameters

Parameter Meaning
L Length of finite string S

I
Total number of symbols in partition 

li Length of symbol i 

ri

Number of repetitions of symbol i in S
If repetitions for all symbols are equal 
then ri

 = r and 

R
Total number of repetitions, 

Li

Length of S consumed by symbol i 
L = liri

Cp

Total Descriptive cost of S under parti-
tion p. Equal to the sum of the model 
description M plus the encoding of the 
data under the given model. 

ci
Descriptive Cost of Symbol i. This 
parameter will be derived in section 4

Di
Symbol Compression Ratio (SCR)

i 1,I[ ]∈

R ri
i
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The minimum for a given number of symbols in 
the data can be calculated as follows:

where s is the number of symbols contained in the 
data (Figure 40).

It can be easily shown that for a given number of 
symbols I, a minimum description length can be 
expected if each equally likely symbol is repeated r 
times where:

This number represents the optimal tradeoff 
between codebook size and encoded data size for a 
given string partition into equally likely, equal 
length symbols (Figure 41).

As shown in Figure 41, the benefit of repeated 
patterns in fixed size data is overcome more quickly 
in a large equally likely alphabet. For the case where 
the entropy is less than one (i.e., there is only a sin-
gle symbol) the benefit increases until all symbols 
are repeats, as expected. As an example of this prin-
ciple, consider a 1000 bit string 

X=101010101010101010101010101010101010101…

There are many ways to parse this string. As 
shown in Figure 42, in an optimal parsing of this 
string with a two symbol, equal length, and equally 
likely alphabet, each symbol would repeat about 20 
times. The optimal descriptive cost for this partitions 
is approximately 100 bits = 25 bits to describe each 

codeword, 40 bits to encode each codeword in the 
string. Note that we have ignored “Comma” cost, 
which will be required to show separation of code 
words in the codebook. The codebook listed below 
achieves this partition:

A=1010101010101010101010101

B=0101010101010101010101010,

with the encoded string represented by ABABA-
BAB… 20 times. 

Two other partitions are noted in, both with simi-
lar code words except the length of each codeword 
is different. In the first case, (represented by a + in 
Figure 42) each symbol is 125 bits long and repeated 
four times. In the second case each symbol is 5 bits 
long and repeated 100 times. Both cases require a 

Cp li R+
2

I( ) IL
R
--- R

2
I( )log+=log

i
∑=

Figure 40.  More equally likely symbols in a partition 
cause the Entropy to increase – raising the bits per 
symbol descriptive cost in a less than linear manner. 

r IL

2
I( )log

------------------
1
I
---=

Figure 41.  Symbol length and number of repetitions of 
equal length equally likely symbols comprising a string of 
finite length produce competing affects in total string de-
scriptive cost. 

Figure 42.  Descriptive cost vs. number of repeats for 
two symbol partitions of the 1000 bit string 
101010101…. 
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 2. Discussion

much lar ger descriptive cost for the string. In the 
first case the additional burden is on the codebook 
that must describe two 125-bit symbols. In the sec-
ond case the burden is on the encoding of the data, 
which must describe 200 symbols once encoded. As 
a benchmark, the LZ78 can encode this string in 378 
bits.

The above analysis shows that when partitioning a 
string both length of symbols and number of repeti-
tions of symbols must be traded off and optimized in 
order to minimize descriptive length. We develop a 
method to treat non-uniform distributions in the 
next section. 

Symbol compression ratio
 In seeking to partition the string so as to minimize 
the total string descriptive length Cp, we consider 
the length that the presence of each symbol adds to 
the total descriptive length and the amount of cover-
age of total string length L that it provides. As 
described in Section 3, the descriptive cost of the 
model is on the order of the sum of the lengths of 
unique symbols in the partition. The descriptive cost 
of the encoded data is on the order of R⋅Hs, where 
Hs is the entropy of the symbol partition and R the 
total number of symbols in the string. The probabil-
ity of each symbol, pi, is a function of the number of 
repetitions of each symbol: 

Thus, we have:

Since 

we can simplify this to:

Hs is a measure of the ability to encode the distri-
bution p of I symbols. The smaller Hs the fewer bits 
per symbol required to encode each symbol. For a 
fixed I, Hs is maximized when all I symbols are 

equally likely. Total number of symbols R multiplied 
by Hs will yield the length required to encode the 
data using an optimal technique. This can be added 
to the codebook size to achieve a bound for the 
descriptive complexity under partition p 
(Figure 43).

Thus, descriptive length of the string under parti-
tion p is equal to:

Our goal is to find a per symbol descriptive cost. 
In the equation above, all terms are defined per sym-
bol i with the exception of the first term. We define 
the relation:

where q is a constant estimating log2(R). For R that 
can vary between 2 and L/2 for symbols of size 2 bits 
or greater, log2(R) can be estimated to enable an 
incremental, per symbol formulation for Cp. Estimat-
ing q:

results in a conservative approximation for Rlog2(R) 
over the likely range of R as shown in for partitions 
of strings having length equal to 1000 bits. The per-
symbol descriptive cost can now be formulated:
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C p is less than the sum of the individual code 
words due to the conservative approximation for 
log2(R). A lower bound on the estimate for d can be 
formed as well to create upper and lower bounds on 
the descriptive length Cp:

This bound can be tightened, as better estimates 
of the total number of repetitions in a partition 
become known. 

    We now have a metric that conservatively esti-
mates the descriptive cost of any possible symbol in a 
string. A measure of the compression ratio for a par-
ticular symbol is simply the descriptive length of the 
string divided by the length of the string “covered” 
by this symbol. We define the compression ratio of a 
symbol (SCR) to be (Figure 44):

Thus we have a metric to describe the effective-
ness for compression of a particular candidate sym-
bol in a possible partition of a string that can be 
used for comparison in forming a partition Examin-
ing SCR above it is clear that good symbol compres-
sion ratio arises in general when symbols are long 
and repeated often. Clearly, selection of some sym-
bols as part of the partition is preferred to others. 

Figure 44 and Figure 45 show how symbol com-
pression ratio varies with the length of symbols and 
number of repetitions for a 1024 bit string. In both 
figures the discontinuities reflect when symbol 

length times number of repeat exceeds string 
length, and SCR is therefore undefined (Figure 45). 

Optimal Symbol Compression Ratio (OSCR) 
algorithm 

 The Optimal Symbol Compression Ratio (OSCR) 
algorithm forms a partition of string x into symbols 
that have the best symbol compression ratio among 
possible symbols contained in x. The concept is to 
form a codebook dictionary that provides near opti-
mal compression by adding one codeword at a time 
based on the code words symbol compression ratio. 
The algorithm is shown in the sidebar.

cmini
ri 2

ri( )log li ri 2
ri( )log–+ li= =

 cmini
i
∑ cp ci

i
∑≤ ≤⇒

Figure 44.  SCR vs. Symbol Length for 1024-bit String. 

Figure 45.  Figure 16 SCR vs. Repeats for 1024 bit String. 

OSCR ALGORITHM
1. Form a binary tree of all non-overlapping 

sub-strings contained in x that occur’ 2 
times and note the frequency of occur-
rence.

2. Calculate the SCR for all nodes (sub-
strings). Select the sub-string from this set 
with the smallest SCR and add it to the 
model M. 

3. Replace all occurrences of the newly added 
symbol with a unique character to delineate 
this symbol. Repeat steps 1 and 2 with the 
remaining binary string elements until no 
binary elements remain.

4. When a full partition has been constructed, 
use Huffman coding or another coding 
strategy to encode the distribution, p, of 
symbols. 
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The following comments can be made regarding 
this algorithm:

• This algorithm progressively adds symbols that 
do the most compression “work” among all the 
candidates to the code space. Replacement of 
these symbols left-most-first will alter the fre-
quency of remaining symbols.

•  SCR is at first based on the crude estimate for 
R discussed previously. Justification of this esti-
mate and possible iteration of the algorithm 
can be achieved by performing the algorithm 
again upon completion with the computed 
value for R defined by the partition calculated 
by the algorithm. An unchanged partition vali-
dates the output of the algorithm. If the parti-
tion does change, the algorithm can be iterated 
using computed values of R until it converges 
or repeats a previous case. 

• A less exhaustive search for the optimal SCR 
candidate is possible by concentrating on the 
tree branches that dominate the string.

• The algorithm does not require a prefix free 
partition of the string. The left-most substitu-
tion of highest SCR symbols first suffices to pro-
duce a unique partition. A prefix free code is 
however assumed in the encoding.

• Reduction of the binary tree size can be 
achieved by noting minimum SCR at each level 
and considering bounds from tree nodes 
(Figure 46). 

As an example consider the 40-bit string below:

X = 0011001001000010100101001100100110011001.

A full five level binary tree expansion of all sub 
strings contained in this string does not include all 
possible nodes. Rather, only certain possible pat-
terns are contained in any partition. identifies the 
possible sub strings that occur. The first pass of the 
OSCR algorithm will produce the binary tree of sym-
bol frequencies shown in Figure 47. Note, in build-
ing this tree we noted and utilized the fact at the 
second level of the tree the SCR of 12 repetitions of 
the symbol 01 is < 0.5, thus we did not expand tree 
nodes with two or less repeats.

As shown in Figure 47, the symbol 001 is repeated 
10 times and has the smallest symbol compression 
ratio. Substituting “A” for this symbol produces the 
string: 

X’ = A1AA00A01A01A1AA1A1A (Figure 47)

Iterating the algorithm shows that the second 
symbol candidate, 01 that has the smallest compres-
sion ratio, does not promote compression. Thus the 
remaining symbols simply substitute for 1 and 0: 

ABAACCACBACBABAABABA

This provides the distribution of symbols shown 
in Figure 4. The entropy of this symbol distribution 
is 1.48 bits per symbol. This can be approximated by 
the Huffman tree shown in Figure 48, which 

Figure 46.  Binary Tree for a specific string. Nodes in-
cluded are in white. 

Figure 47.  Binary Pattern Tree in first pass of algorithm. 
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achieves an expected encoded length of 1.5 bits per 
symbol.

Simple substitution of the new code results in the 
encoded string:

X’ = 010001111011100111001000100100:

Thus, the encoded message has been reduced to 
30 bits from the original 40 bits. The descriptive cost 
of the codebook is estimated as the sum of the 
lengths of symbols, which is equal to 5 bits. Depend-
ing on the strategy for delineating the separation 
between code words and defining the prefix free 
encoding of the codebook this descriptive cost could 
vary. Estimated results compared with LZ78 for sev-
eral short strings are shown in Table 5.

The previous example illustrates the concept of 
the OSCR algorithm. As is the case with Lempel-Ziv 

and other compression algorithms, greater compres-
sion is realized on strings of longer length. In addi-
tion to compression, the algorithm provides the 
following benefits:

• The model developed can be used to produce a 
typical set of strings to which x belongs.

• The symbol alphabet size of 3 symbols is an 
inherent parameter associated with this string 
that can be used to compare it with other 

strings. The symbol size measurable parameter 
related to complexity that reflects the number 
of variables address by the string. 

Comparison with Lempel-Ziv78
 The OSCR and LZ78 algorithms share the approach 
of dictionary coding strategies, achieving compres-
sion through giving smaller representations for 
longer repeated strings. The difference is that the 
string patterns identified and indexed in LZ78 are 
precisely the unique string patterns that occur from 
left to right that have not been seen before. No 
effort is made to construct a partition of repeated 
patterns that gives a more optimal encoding than 
that which falls out of the patterns or string phrases 
that occur first. In most implementations all sub-
strings are given an equal size codeword (index), 
therefore a frequently occurring short codeword 
may actually be expanding the size of the encoded 
string. The benefit of the Lempel-Ziv approach is 
the computational simplicity and ease with which 
the dictionary or codebook is communicated. The 
dictionary is essentially interleaved in the encoded 
data and commas or explicit communication of the 
codebook is not required.

   The OSCR takes the other extreme by identify-
ing the repeated patterns that contribute most to 
compression of the string at the expense of compu-
tational requirements. One can envision a combina-
tion of these two philosophies that will be addressed 
in future work that provides a continuum of grada-
tion between compression gain and computational 
requirements. 

Comparison of estimators for detection of FTP 
exploits
The goal of the OSCR algorithms is to improve com-
plexity estimation in a manner that provides the abil-
ity to discern attack vs. healthy behaviors. Results 
from Figure 172indicate a separation of curves for 
attack vs. healthy ftp traffic. Widening these curves 
will result in better ability to discern exploits with 
fewer false alarms. 

Figure 49 shows the difference in complexity esti-
mation provided by various complexity estimators 
healthy session and an attack session trace files of 
about 2kbits. As shown in the figure, empirical 
entropy and straight LZ78 estimation incorrectly dis-
cern healthy from attack behavior. OSCR widens the 
curve over Zip compress (Zlib), providing a better 
margin for error in discerning attack, despite the 
fact that Zip compress provides a better compressor 

Table 4 Symbol Distributions

Substring Symbol Probability New Code

001 A 0.5 0

1 B 0.3 10

0 C 0.2 11

Table 5 Encoded Lengths for several short strings.

String LZ78 OSCR Model

0100101101001011010010110 40 0.20 010,11,0

1010101010101010101010101 30 12 1010,1

1110110111101101110111101 30 20 101,11,1

Figure 48.  Huffman Tree 
for Symbol Partition. 
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as shown in Figure 50. Further data must be taken to 
validate this gain. Additional gains in OSCR com-
pression can be made through optimizing the model 
cost beyond simple sum of the codeword length 
(Figure 50). 

2.7 DETECTING DISTRIBUTED DENIAL-OF-
SERVICE ATTACKS USING KOLMOGOROV 
COMPLEXITY METRICS

Distributed denial-of-service attacks are caused by 
the attacker flooding the target machine with a tor-
rent of packets originating from a number of 
machines under the attacker’s control. These 
machines are called ‘zombies’. The attacker typically 
uses ICMP or UDP packets for the attack. Typical 
detection techniques  [156, 157] for these types of 
attacks rely on filtering based on packet type and 
rate. Essentially, the detection software attempts to 
correlate the type of packet used for the attack, be it 
ICMP or UDP, with the destination. While these 
techniques have reasonable success, they are not 

very flexible. For example, these techniques will fail 
if a new type of packet is used for attack or if the 
attack consists of a traffic pattern that is a combina-
tion of ICMP and UDP packets. In such cases, packet 
profiling is defeated. This report describes an 
approach based on fundamentals of information 
complexity that is both flexible and effective.

Stated as simply and succinctly as possible, we 
hypothesize that information, comprising observa-
tions of actions with a single root cause, whether 
they are faults or attacks, is highly correlated. Highly 
correlated data has a high compression ratio. The 
Kolmogorov Complexity, K(x), of a string of data 
measures the size of the smallest program capable of 
representing the given piece of data [10]. It mea-
sures the degree of randomness for the given data. 
The length of the shortest program to generate a 
completely random string is equal to the size of the 
string itself. For all other cases, it is smaller than the 
size of the string and the program size becomes 
smaller as more regularity or pattern is discernible 
from the string. A side effect of this measure is its 
ability to represent the correlation between dispar-
ate pieces of data. This side effect is exploited to 
design an effective method for detecting DDoS 
attacks (Figure 51).

Approach
The DDoS attack detection algorithm makes use of a 
fundamental theorem of Kolmogorov Complexity 
that states: for any two random strings X and Y, 

K(XY) <= K(X) + K(Y),………..(1)

where K(X) and K(Y) are the complexities of the 
respective strings and K(XY) is the joint complexity 
of the concatenation of the strings. Simply put, the 
joint Kolmogorov complexity of two strings is less 
than or equal to the sum of the complexities of the 
individual strings. The equivalence holds when the 
two strings X and Y are totally random i.e. they are 
completely unrelated to each other. Another effect 

Figure 49.  Comparison of OSCR vs. Zip Compress for FTP data. 

Figure 50.  Comparison of OSCR vs. Zip Compress Compres-
sion Ratio. 

Figure 51.  Implementation in Magician Active Node. 
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of this relationship is that the joint complexity of the 
strings decreases as the correlation between the 
strings increases. Intuitively, if two strings are 
related, they share common characteristics and thus 
common patterns, That knowledge can be har-
nessed to generate a smaller program that can repre-
sent the combined string.

 The concept of “Conservation of Complexity” 
was introduced in [210]. This concept relates to the 
ability to discern an attack by monitoring the com-
plexity change due to processes occurring in the sys-
tem and imposing bounds that identify 
unauthorized processes—noted by complexity 
changes that are either too great or too small to be 
from authorized processes. Figure 52  describes the 

concept of conservation of complexity. This concept 
was first applied to a closed system, where the pro-
cesses are known and able to be monitored by com-
plexity probes. In the distributed case of a denial of 
service attack, the process is not known, but bounds 
on the differential complexity allowed by the distrib-
uted processes are still able to be enforced. 

The above given by inequality (1) is exploited to 
distinguish between concerted denial-of-service 
attacks and cases of traffic overload. The assumption 
is that an attacker performs an attack using large 
numbers of similar packets (in terms of their type, 
destination address, execution pattern etc.) sourced 
from different locations but intended for the same 
destination. Thus, there is a lot of similarity in the 
traffic pattern. A Kolmogorov complexity based 
detection algorithm can quickly identify such a pat-
tern. On the other hand, a case of legitimate traffic 
overload in the network tends to have many differ-
ent traffic types. The traffic flows are not highly cor-
related and appear to be random. Therefore, our 
algorithm samples every distinct flow of packets (dis-
tinguished by their source and destination 
addresses) to determine if there is a large amount of 

correlation between the packets in a flow. If it is 
determined to be so, then all suspicious flows at the 
node are again correlated with each other to deter-
mine that it is indeed an attack and not a case of a 
traffic overload. 

The architecture for DDoS detection has been 
implemented in an active network for ease of 
deployment and flexibility in testing. As shown in 
Figure 53, it consists of a packet complexity probe 

(described in detail in the next section) associated 
with every traffic flow through a node that periodi-
cally samples packets in the flow. For the collected 
sample, the probe calculates the complexity differ-
ential for the sample. Complexity differential is defined 
as the difference between the cumulative complexities of 
individual packets and the total complexity computed when 
those packets are concatenated to form a single packet. If 
packets x1, x2, x3,…,xn have complexities K(x1), 
K(x2), K(x3),…, K(xn), then complexity differential is 
computed as:

[K(x1) + K(x2) + K(x3) +…+ K(xn)] – K(x1x2x3…xn),

where K(x1x2x3…xn) is the complexity of the packets 
concatenated together. If packets x1, x2, x3,…,xn are 
completely random, K(x1x2x3…xn) will be equal to 
the sum of the individual complexities and the com-
plexity differential will therefore be zero. However, if 
the packets are highly correlated i.e some pattern 
emerges in their concatenation, then the concate-
nated packet can be represented by a smaller pro-
gram and hence its complexity i.e., K(x1x2x3…xn) 
will be smaller than the cumulative complexity. In 
effect, we use the measure of the compressibility of 
the packets accumulated in a given time interval to 
determine correlation. If the complexity differential 
is greater than a preset threshold for the flow, the 
flow is marked as suspect and the collected sample is 
referred to a Local Detector running on the node.

Figure 52.  Principle of conservation of com-
plexity. 

Figure 53.  DDoS detection architecture. 
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 2. Discussion

The Local Detector receives all such samples 
from various suspicious flows and correlates all the 
samples together using the same complexity differ-
ential calculation. If there is only one suspect flow, 
no correlation is performed. If the complexity dif-
ferential again exceeds the threshold, all suspect 
flows (including the case of a single flow) are 
referred to a Domain Detector that is running on 
some other node on the local network domain. This 
hierarchy of detectors cooperates to detect distrib-
uted denial of service attacks in the network itself. 
This hierarchy is shown in Figure 53.

Complexity estimates
While it is known that, in general, Kolmogorov com-
plexity is not computable, various methods exist to 
compute estimates of the complexity. The packet 
complexity probe described in the previous section 
uses an entropy calculation technique for estimation 
of complexity. The Kolmogorov Complexity estima-
tor, currently implemented as a simple compression 
estimation method, returns an estimate of the small-
est compressed size of a string. The complexity K(x) 
is computed using the entropy H(p) of the weight of 
ones in a string. Specifically, K(x) is defined in Equa-
tion 1.A where is the number of 1 bits and is the 
number of 0 bits in the string whose complexity is to 
be determined. Entropy H(p) is defined in Equation 
1.B. The expected complexity is asymptotically 
related to entropy as shown in Equation 1.C. See 
[10] for other measures of empirical entropy and 
their relationship to Kolmogorov complexity.

The complexity estimation technique used here is 
not the best because empirical entropy is actually a 
very poor method of complexity estimation. For 
example, the estimate for the string

101010101010101010101

and a completely random string with equal numbers 
of 1’s and 0’s is the same under empirical entropy. 
More accurate estimates for complexity will only 

serve to improve our method for DDoS detection. 
See[162] for an innovative and improved method 
for complexity measurement. In future work, this 
technique will be used in the complexity probe and 
the performance of the algorithm will be compared 
with respected to the two techniques.

Experimental results
We compared our technique to a prototype packet 
counting algorithm for DDoS detection and found 
that our technique is better discriminates traffic pat-
terns. We used our Magician-based [159] active net-
work [160] test bed for the experiment for two 
reasons. It is quite easy to set up a desired topology 
for the network, as well as control and measure per-
formance using an active network. Secondly, it is eas-
ier to embed our complexity probes, which are 
written in Java, inside the Java-based Magician ker-
nel as opposed to embedding them inside commer-
cial routers. The results, however, can be 
extrapolated to real traffic settings (Figure 54). 

The experimental setup consisted of a set of 
active nodes arranged in the topology shown in. 
Node AH-1 continuously generates traffic consisting 
of audio packets destined for node AN-2. The load 
induced by this traffic is high enough that it is regis-
tered at node AN-1 as a ‘suspicious’ flow i.e. a traffic 
flow whose complexity differential exceeds the 
threshold. The load induced by this traffic flow is 
kept constant throughout the experiment. Node 
AH-2 generates the attack flow. The load induced by 
the attack flow is varied to determine the perfor-
mance of the algorithms. The experiment is run 
twice, once with only the attack source on (node AH-
2 transmitting only) and the next time with both 
sources on (both node AH-1 and node AH-2 trans-
mitting). The rationale is that an attack is essentially 
a sustained overload induced for some time interval. 

1.A

1.B

1.C
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Figure 4. Topology for experiment

Figure 54.  Topology for experiment. 
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The purpose of the experiment is to determine the 
effectiveness of the two techniques in separating and 
identifying an attack in the presence of background 
traffic.

Figure 55 and Figure 34 show the performance of 
the packet-counting and complexity-based 
approaches as measured against the load induced by 
the two sources (in packets per second) described 
above. Figure 55 shows that the packet-counting 
metric cannot discriminate between an attack and a 
true overload. When the audio source is transmit-
ting in conjunction with the attack source, any 
threshold set by the packet-counting algorithm run-
ning on node AN-1 will be exceeded leading to the 
false conclusion that the node is under attack. For 
example, based on the attack pattern only (blue 
curve), we decide to set the threshold at 70 pack-
ets/s for a load of 0.6. When the audio source is 
introduced, the combined traffic trips the same 
threshold at a load of only 0.4, which is a false posi-
tive. Figure 54 below shows the complexity differen-
tial versus load curve for a given sampled time 
interval, which in this case was 10 seconds. The com-
plexity-based metric does not change its behavior 
when a combination of attack and traffic sources is 

used. This is because the attack traffic dominates the 
combined flow and hence the complexity differen-
tial roughly equal to that observed when only the 
attack flow existed. Therefore, the complexity-based 
approach is more accurate in separating false alarms 
from true attacks because it can conserve salient pat-
terns of a traffic flow.

Figure 55.  Performance of packet-counting metric. 
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3. Kolmogorov Complexity as a Fundamental
Metric Enabling Vulnerability Analysis

3.1 AUTOMATED DISCOVERY OF 
VULNERABILITIES WITHOUT A PRIORI 
KNOWLEDGE OF VULNERABILITY TYPES

The design of the vulnerability analysis tool consists 
of three logical layers as shown in Figure 56. Com-

plexity measurement probes within the actual system 
form the first layer. The results from the probes are 
used to build a K-Map. The K-Map consists of 
a  matrix, where C is the set of informa-
tion system components. The matrix represents a 
complete representation of “attack” components 
crossed with target components. The diagonal val-
ues are zero because the complexity of a compo-
nent, assuming the component has already been 
compromised, is zero. Components that cannot 
physically be accessed from another component 
have an infinite complexity value. Note that the K-
Map values change as an attack progresses. The com-
plexity values are updated using conditional Kol-
mogorov Complexity estimates from Equation (1.2). 
This updates insecurity flow given that an attacker 
has partially penetrated the system and has gained 
knowledge of the compromised components. The 
result of this matrix can be viewed as a complexity 
surface as shown in [57]. The top layer consists of 
vulnerability states and transition values obtained 

from layer two. Relative complexity estimates are 
used to quantify the resistance to attack along the 
edges of the graph and the nodes are the state of an 
attack.

A model information system has been imple-
mented in Mathematica [102]. Mathematica pro-
vides an ideal environment for experimenting with 
symbolic mathematical concepts and algorithmic 
information theory in general. The goal is to deter-
mine the vulnerability not only of the overall system, 
but also of system components. Vulnerability analysis 
must be possible without a priori knowledge about 
system operation or knowledge of particular types of 
vulnerabilities. Expert systems and vulnerability 
analysis tools that rely upon rules identifying partic-
ular types of vulnerabilities are inherently brittle. 
Such tools provide good performance when known 
attacks are applied, however, they fail catastrophi-
cally, and are therefore useless, against an innovative 
attacker.

Every information system is assumed to take data 
of some form as input, process the data and return 
data as output. Every information system can be 
defined as a mathematical operation. Information 
systems developed by humans today tend to be 
highly structured in order to be tractable in their 
development and maintenance. Generally, there are 
well-defined data flows and processing functions 
within the information system. The system is com-
posed of a hierarchical composition of functional 
units. For these systems, one can imagine complexity 
probes located at the input and output of every 
functional unit in the system. This allows determina-
tion of the vulnerability of each process and data 
stream at a high degree of granularity. This provides 
a complexity-based vulnerability map for the system. 
A potential attacker would be unlikely to have such a 
detailed understanding of a target information sys-
tem. An optimization to this technique is to limit 
probe locations to only those locations likely to be 
observable to an attacker.

System under evaluation: the active network
In the remainder of this paper, a specific example is 
used to communicate the architecture and opera-
tion of the vulnerability analysis framework. The spe-

Figure 56.  Logical view of complexity-based vulnerability 
analysis process. 
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cific example focuses upon an active network [102] 
in which a distinction is made between an active net-
work and a legacy, or passive, network. This environ-
ment is used to emphasize that information 
assurance laws must be able to deal with many alter-
native and dynamically changing representations of 
information.

With regard to active packets and information 
theory, passive data is simple compressible data; 
active packets are a combination of data and pro-
gram code whose efficiency can be estimated by 
means of Kolmogorov Complexity. A brief concep-
tual view of Kolmogorov Complexity for active net-
work packet optimization is demonstrated in 
Figure 57 in which the same information is pre-

sented with varying proportions of code to data. The 
length of the information varies with the hypotheses 
used to represent the information within the packet. 
The shortest possible representation is the estimate 
of the packet complexity [109]. The active network 
Kolmogorov Complexity estimator is currently 
implemented as a quick and simple compression 
estimation method. The Kolmogorov Complexity 
estimator returns an estimate of the smallest com-
pressed size of a string. It is based upon computing 
the entropy of the weight of one bits in a binary 
string. Specifically it is defined in Equation 6 where 
x#1 is the number of 1 bits and x#0 is the number of 
0 bits in the string whose complexity is to be deter-
mined. Entropy is defined in Equation 7. See [103] 
for other measures of empirical entropy and their 
relationship to Kolmogorov Complexity. The 

expected complexity is asymptotically related to 
entropy as shown in Equation 8. 

Observe an input sequence at the bit-level and 
concatenate with an output sequence at the bit-level. 
This input/output concatenation is observed for 
either the entire system or for components of the 
system. Low complexity input/output observations 
quantify the ease of understanding by a potential 
attacker. Previous work has demonstrated the use of 
Kolmogorov Complexity for Distributed Denial of 
Service (DDoS) attack detection [104]. Definition 6 
explicitly states the means of measuring the com-
plexity of a system component, or protocol interac-
tion, to a potential attacker.

(6)

(7)
(8)

In the remainder of the paper, excerpts from a 
Mathematica Notebook are included. The excerpts 
contain code using common mathematical and pro-
gramming constructs, and therefore should be intu-
itively obvious without requiring knowledge specific 
to Mathematica. Any Mathematica specific details 
are explained in the text. As a specific example of 
the algorithmic capabilities of active networks, con-
sider the transmission of an estimate of π. One could 
choose to send π as an extremely large number of 
digits. Or in contrast, one could send a smaller algo-
rithm capable of generating π to an arbitrary num-
ber of digits. Consider an illustration of this concept 
in more detail. The Mathematica code, {{#1/#2 &}, 
{22.,7.}}, represents an unnamed function that 
divides the first argument by the second argument; 
the function implements 22/7. Consider that the 
code ({#1/#2 &}) and the data ({22.,7.}) remain 
unevaluated and are transmitted together. This rep-
resents an active packet; it contains part code and 
part data. The RUN function evaluates the function 
and returns the result. The result in this case is static 
data, a legacy data packet. Mathematica code that 

Figure 57.  Same active packet information; varying hypothe-
ses (proportion of code to data). 

Definition 6: 
Complexity-
based 
Vulnerability 
Metrics

Vulnerability is inversely proportional 
to K(x[opstart:opend])/l(x[opstart:opend]) 
where opstart is the bit at which an 
operation to be discovered within an 
information system begins, and opend is 
the last bit in an attacker’s observation
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 3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis

analyzes the characteristics of algorithmic and pas-
sive information transmission is shown in Figure 58. 

The active packet is defined as {{#1/#2 &}, {22.,7.}}, 
which contains a pair of values and the code neces-
sary to perform division. The legacy, or passive 
packet, is defined as RUN{{#1/#2 &}, {22.,7.}}, which 
pre-computes the result of the division and transmits 
the same information in non-algorithmic form. The 
argument defined as {{1,2,3,4},{4,3,2,1}} identifies the 
links traversed by the active and passive packets 
respectively. In this case, the first packet begins by 
crossing link one and the second packet begins by 
crossing link four. The argument defined as 
{100,100,1000,1000} indicates link capacities for 
links one, two, three and four. Thus, the first packet 
transmits both code and data that generates the 
intended information, while the second packet 
transmits raw data only. The result of executing the 
function below is load and processing time spent on 
each link and node for each packet. In Figure 59, 

the load induced by sending the estimate of π using 
AnetSim in Figure 58 is plotted for each link. 
Clearly, the algorithmic representation of the infor-
mation is more compact and uses less link capacity.

In fact, this reinforces the fact that by knowing 
how to compute π, one could build a more compact 
representation. This demonstrates Occam's Razor 

for a useful purpose, information compression. This 
has facilitated study of active (algorithmic) versus 
passive transmission of information. For example, 
we allow the ratio of data to code to change for the 
same information as the packet traverses the net-
work in a manner that optimizes both link capacity 
and node processor speed.

Complexity surface: the Kolmogorov 
Complexity map
The GE Global Research active network test bed 
implements complexity probes as part of the active 
execution environment. The choice was made to 
embed the complexity probe in the execution envi-
ronment rather than as an active application 
because it is necessary to examine the content of 
active packets before they reach the execution envi-
ronment. In the Mathematica simulation, each com-
ponent of the active application contains probe-
input points through which bit level input and out-
put is collected. A complexity estimator based upon 
the simple inverse compression ratio from Equation 
(1.4) is used to estimate complexity in the density 
metric. Figure 60 and Figure 61 graphs result from 

density estimates taken of accumulated input and 
output of three separate components of the active 
network application. The graphs show the complex-
ity of bit-level input and output strings concatenated 
together. That is, every input sequence is concate-
nated with an output sequence and the density of 
the sequence is recorded at bit-level.

The input/output concatenation is generated 
either for individual components of the system or 
for a composition of components. If there is low 
complexity in the input/output observation pairs, 
then it is likely to be easy for an attacker to under-
stand the system. The X-axis is the number of input 

Figure 58.  Static versus active information in the Mathematica
active network simulator. 

Figure 59.  Algorithmic versus static active network informa-
tion load. 

Figure 60.  Component complexity for components B, C and E. 
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and output obser vations concatenated to form a sin-
gle string of bits. From Figure 61, it would appear 
that Component E is most vulnerable due to its con-
sistently low complexity while Component B appears 
to be the least vulnerable due to its larger complex-
ity. These results make intuitive sense because Com-
ponent E simply forwards data without any form of 
protection while Component B adds noise to the 
data. This vulnerability method does not take into 
account whether a component reduces or increases 
complexity. In other words, whether the change was 
endothermic or exothermic complexity. These 
results demonstrate how vulnerabilities are systemat-
ically discovered using complexity. Vulnerabilities 
can be quantified to a value within the bounds of the 
complexity measure error. 

In order to develop the Kolmogorov Complexity 
Map (K-Map), consider the topology in more detail. 
Figure 62 shows the resulting densities inserted into 

a Mathematica graph object. The graph object 
allows graph theory related analyses to be applied. 
The directed graph Figure 63 shows the relationship 
among the vulnerabilities. The START state, located 
in the center of the topology, represents a location 
outside the system. In Figure 64 a matrix is gener-
ated that shows the cost, in terms of complexity, of 
traveling from any node to any other node in the K-
Map. In Figure 65, the function CoordVul computes a 
maximum flow through the K-Map graph using the 

node positions as shown Figure 63. Density 
(K(x)/l(x)) acts as a resistance, while its inverse acts 
as conductance, supporting insecurity flows as illus-
trated in Figure 66. The resulting flow matrix in 
Figure 68 shows the maximum flow through each 
link. Figure 68shows the complexity surface of the 
resulting flows. Higher areas correspond to less vul-
nerable states, while lower areas correspond to more 
vulnerable states. Note that in the following contour 
maps, areas of infinite height are simply shown with-
out a surface. By comparing Figure 63 and 
Figure 68, it is apparent that the START state, the 
infinite mountain in the center of the topology, is 

Figure 61.  Mean component complexities for B, C and E. 

Figure 62.  Kolmogorov Complexity map (K-Map). 

Figure 63.  System under analysis: components and topolo-
gy. 

Figure 64.  Minimum complexity paths matrix. 

Figure 65.  Insecurity flow graph. 
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invulnerable, which makes intuitive sense. State E is 
the weakest individual component and lowest area 
on the right side. Note that while State C cannot be 
directly attacked from the START state, it can be 

attacked via states B and E, located in the upper and 
lower right side of the figure respectively. Thus, B 
and E have a relatively intermediate level of vulnera-
bility. In the insecurity flow contour shown in 
Figure 69, density is resistance and all possible flows 

from and to every node are summed to obtain an in 
security level. While Node C is assigned infinite com-
plexity as shown in Figure 68, it actually is the most 
insecure component given that flows exist from 
Nodes B and E. 

3.2 A PRIORI VULNERABILITY ANALYSIS: THE 
NETWORK INSECURITY PATH ANALYSIS 
TOOL

The Network Insecurity Path Analysis Tool (NIPAT) 
[105], like many security tools, assumed a priori 
knowledge of vulnerabilities. It then estimated secu-
rity flow by assigning probabilities based upon the 
number of opportunities for an attacker to advance 
from one vulnerability to another. An example of 
NIPAT operation is shown in Figure 70. In this fig-
ure, 2,000 a priori defined vulnerabilities found on a 
few nodes of a network that were thought to be rea-
sonably secure are displayed. The hosts upon which 
vulnerabilities reside and the a priori defined type of 
vulnerability are displayed. The number along each 
edge of the graph represents the number of oppor-
tunities available to the attacker to reach the next 
vulnerability. This information is gathered from net-
work security software agents that are pre-pro-
grammed to identify predefined types of 
vulnerabilities. The security vulnerability graph for a 
typical network can be extremely dense, however, 
the object-oriented nature of the security model is 

Figure 66.  Grid-based representation of information assur-
ance. 

Figure 67.  Flow results matrix. 

Figure 68.  Complexity surface for system in Figure 84. 

Figure 69.  Insecurity flow contour of system in Figure 63. 
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useful in choosing the level of abstraction required. 
For example, it may be possible to display the vulner-
ability graph for Unix hosts in general and to hide 
the details of individual Unix variants. NIPAT deter-
mines the degree to which specified targets within 
the network can be compromised. The vulnerability 
chain is displayed as a directed graph. Nodes repre-
sent vulnerabilities whose security may be compro-
mised, and edges represent paths from vulnerability 
to vulnerability. The larger the value of the edge 
label, the greater the vulnerability. The focus of this 
effort is on the mathematical representation of 
information assurance, thus, the underlying data-
base and data gathering agents are not discussed in 
detail in this paper.

Two algorithms are demonstrated; the first is a 
probabilistic analysis and the second is a maximum 
flow analysis. Let us start with the probabilistic analy-
sis. Select a node to be the target of the attack; in 
this case we have selected Host C Vuln 4. Select a 
specific attack entry point anywhere in the system 
and add the attacker to the graph. A text window 
appears stating the probability of successful attack 
(0.729) followed by the graph shown in Figure 71 
that shows the most probable path of attack high-
lighted. The analysis is re-executed using the maxi-
mal flow algorithm. Host C Vuln 4 is again selected 
as the target. A text window appears displaying the 
maximum flow (6.0) as well as detailed graphical 
results shown in Figure 72. The edge values have 
been changed to show the maximum flow along 
each edge towards the target node. In this case there 
is a flow of 1.0 and a flow of 5.0 that can reach the 
target node. 

Complexity-based insecurity flow
Assigning probability of exploitation for vulnerabili-
ties based upon the assumption that all vulnerabili-
ties can be explicitly discovered a priori and placed in 
data or knowledge base is a fallacy for several rea-
sons. First, a brute force approach that attempts to a 
priori explicitly identify all possible vulnerabilities is 
highly system dependent and results in a combinato-
rial explosion. Second, assigning a level of effort 
required to exploit vulnerabilities is highly subjec-
tive. Third, failure to identify even a single vulnera-
bility can result in catastrophic performance failure. 
Such a brute force technique is very brittle as shown 
in the next section. Fourth, once such inaccurately 
quantified probabilities have been assigned, the 
probabilistic mechanism is an unsuitable technique. 
For example, the simple assumption does not follow 

Figure 70.  A grid-based tool action. Figure 71.  Most likely attack path. 

Figure 72.  Maximum flow paths. 
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that composing components serially results in a 
probability of successful attack quantified by the 
product of the probabilities. Mutual information 
between the components can result in a much 
higher probability of successful attack.

Using results from the K-Map described in the 
previous section, it is possible to address these prob-
lems by retrofitting NIPAT to use the complexity-
based vulnerability framework. Both a most likely 
path and a maximum flow algorithm are applied in 
this experimental complexity-based vulnerability 
analysis tool. The most likely path is determined by 
finding the lowest complexity path from a given 
attack point to a given target point. The maximum 
flow algorithm assumes that lower complexity paths 
have a greater capacity. 

The question arises as to what flow means in terms 
of complexity. First, the entire foundation of com-
plexity-based vulnerability analysis rests upon the 
likelihood, or probability, of attack being successful 
upon the low complexity locations of an information 
system as per Definition 6. The complexity probe 
values are displayed as links in the complexity tool 
display shown in Figure 71. The values of the links 
are l(n)/K(n) and these values are normalized to 1.0 
for each node in order to obtain a probability of suc-
cessful attack upon each link. The maximum flow 
algorithm provided by this tool indicates not only 
the vulnerability of each component, but also the 
optimal placement of resources by an attacker to 
maximize the likelihood of a successful attack.

Safeguard optimization techniques
We assume that vulnerability has been calculated by 
NIPAT to be either the maximum insecurity flow or 
probability of successful attack, where S represents 
security safeguards, C(S) is the cost of security, and L 
is the cost constraint or some other hard resource 
limit. Next, we discuss the cost in terms of impact on 
users. Here it is strictly a financial cost or other 
resource constraint. Objective Function 1 shows how 
the optimal security safeguard allocations can be 
determined. V(S) is l(S)/K(S). Let CS represent the 
network service to customers, with a minimum 
accepted quality, Q. Let V(S,A) be the vulnerability of 
the network to a particular attacker, A. Then Objec-
tive Function 2 shows the optimal network response 
given the current state of the attack.

It is possible to use NIPAT to study various strate-
gies of both the defensive and offensive players in a 
network attack. Once an attack has been detected, 

the network command and control center can 
respond to the attack by repositioning security safe-
guards and by modifying services used by the 
attacker. However, cutting off services to the attacker 
also impacts legitimate network users A careful bal-
ance must be maintained between minimizing the 
threat from the attack and maximizing service to 
customers.

The distribution of insecurity information—Another 
dimension of vulnerability analysis involves detect-
ing vulnerabilities that change over time. The net-
work monitoring tool quantifies the vulnerability of 
a system in terms of percent of patches that fail to 
have the correct signature, percent of files which are 
accessible to others besides the owner and percent 
of passwords which can be guessed with a given pass-
word generation tool. Clearly, vulnerability checks 
such as these increase the security of the network. 
Both the type of information gathered and the fre-
quency with which the information is updated quan-
tify the effectiveness of a network monitoring 
strategy. If the information is not updated frequently 
enough, an attacker may have penetrated network 
security and left before network security is aware of 
the situation.

An estimate of the effectiveness of the monitoring 
system is based on a profile of network security 
attacks on the Internet and the following parame-
ters: time to monitor patches, Trojan horses, pass-
words, and any other vulnerabilities. The average 
attack rate, based on Internet incident reports from 
an anonymous site for a six-year period, is five 
attacks per month. Additionally, the Defense Infor-
mation Systems Agency has determined by experi-
mental means [107] that only 0.7 percent of 
incidents are actually reported. Thus, for each path 
in the network security vulnerability chain, the cost 
to the attacker is the probability of being detected 
multiplied by the cost function that the additional 
monitoring provides.

The approach to measuring the complexity of a 
system results in determining the ease with which a 
potential attacker can understand the system. It does 

Objective Function 1: 
Vulnerability and Cost

min V(S)
s.t.C(S) < L

Objective Function 2: 
Vulnerability and Cost while 
Maintaining QoS.

min V(S,A)
s.t.C(S) > Q, C (S) < 
L
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not directly account for the fact that information 
about the target system can be obtained by a poten-
tial attacker in algorithmic form, that is, in the form 
of an attack tool. Such a tool does not require the 
attacker to understand its operation. The attack tool 
is like an active packet, or a parasite that depends 
upon its host for transportation. This is distinct from 
a virus, whose primary function is replication and 
transport. For example, an attacker may have little 
understanding of a particular system, yet the 
attacker may download an attack tool that enables a 
successful attack. Thus, the distribution of attack 
knowledge needs to be considered. Once an attack 
tool is in the hands of an attacker, the apparent com-
plexity is greatly reduced. There is an interesting 
feedback mechanism here; data that can reduce the 
apparent complexity to a potential attacker needs to 
be kept secure by the defender. Once obtained by an 
attacker, a significant drop in apparent complexity 
occurs, potentially leading to further significant 
reduction in apparent complexity as more vulnera-
bility information is obtained and disseminated to 
other attackers.

One might view the evolution of complexity in 
the following terms. An information system is built. 
Initially, an attacker discovers its least complex com-
ponents. The attacker decides to automate his attack 
(active) and/or publish the mechanism to accom-
plish the attack (passive). This information is dis-
seminated through the population. Meanwhile the 
information system defenders, usually after consid-
erable delay, discover the attack mechanism and 
patch the hole. The population of attackers, build-
ing upon their knowledge, exploits the next least 
complex link from their view in the information. 
The defenders eventually close this hole. 

The cycle continues ad infinitum. The cycle of 
attack and defense can be viewed through complex-
ity as a cycle, or evolution of complexity. Low com-
plexity portions of a system will eventually be 
learned and disseminated by an attacker. To account 
for this dissemination of low complexity informa-
tion, defenders reinforce the low complexity areas 
with more complexity. The results of this project 
allow system developers to understand not only 
where the vulnerable portions of the system are 
located, but to engineer their systems in such a man-
ner as to control the cycle. This process can be mod-
eled as low complexity portions of an information 
system that evolve in complexity over time.

3.3 INTRODUCTION
The vulnerability analysis technique presented in 
this paper takes into account the innovation of an 
attacker attempting to compromise an information 
system. A metric for innovation is not new, William 
of Occam suggested a technique 700 years ago [94]. 
The salient point of Occam’s Razor and complexity-
based vulnerability analysis is that the better one 
understands a phenomenon, the more concisely the 
phenomenon can be described. This is the essence 
of the goal of science: develop theories that require 
a minimal amount of information to be fully 
described. Ideally, all the knowledge required to 
describe a phenomenon can be algorithmically con-
tained in formulae, and formulae that are larger 
than necessary lack of a full understanding of the 
phenomenon. The ability of an attacker to under-
stand, and thus successfully innovate a new attack 
against a system component, is directly related to the 
size of the minimal description of that component.

Consider an information system attacker as a sci-
entist trying to learn more about his environment, 
that is, the target system. Parasitic computing [95] is 
a literal example of a scientist studying the opera-
tion of a communication network and utilizing its 
design to his advantage in an unintended manner. 
The attacker as scientist generates hypotheses and 
theorems. Theorems are the attacker’s attempts to 
increase understanding of a system by assigning a 
cause to an event, rather than assuming all events 
are randomly generated. If theorem x, described in 
bits, is of length l(x), then a theorem of length l(m), 
where l(m) is much less than l(x), is not only much 
more compact, but also 2(lx)-(lm)times more likely to 
be the actual cause than pure chance [94]. Thus, the 
more compactly a theorem can be stated, the more 
likely the attacker is to be able to determine the true 
underlying cause described by the theorem.

Motivation
Imagine a vulnerability identification process that 
consisted of the following: First, wait for an informa-
tion system to be attacked. Then analyze the attack, 
assuming, of course, the system survives the attack, 
can still be trusted and the attack can even be 
detected. Finally, if the information system is still not 
compromised, add the attack information to one’s 
knowledge base.

This technique would be unacceptable to most 
people, but it is essentially the vulnerability analysis 
technique used today. Information assurance, and 
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vulnerability analysis in particular, are difficult prob-
lems primarily because they involve the application 
of the scientific method by a defender to determine 
a means of evaluating and thwarting the scientific 
method applied by an attacker. This self-reference of 
scientific methods would seem to imply a non-halt-
ing cycle of hypothesis and experimental validation 
being applied by both offensive and defensive enti-
ties, each affecting the operation of the other. Infor-
mation assurance depends upon the ability to 
discover the relationships governing this cycle and 
then quantifying and measuring the progress made 
by both an attacker and defender. 

A metric and framework are required for quanti-
fying information assurance in an environment of 
escalating knowledge and innovation. Progress in 
vulnerability analysis and information assurance 
research cannot proceed without fundamental met-
rics. The metrics should identify and quantify funda-
mental characteristics of information in order to 
guarantee assurance. A fundamental definition of 
vulnerability analysis is formulated in this paper 
based upon attacker and defender as reasoning enti-
ties, both capable of innovation. Truly innovative 
implementations of attack and defense lead to the 
evolution of complexity in an information system. 
Understanding the evolution of complexity in a sys-
tem enables a better understanding of where to mea-
sure, and how to quantify, vulnerability. In turn, this 
leads towards a calculus of information complexity. 
The design and implementation of a complexity-
based technique is presented as a vulnerability analy-
sis tool for automated measurement of information 
assurance. The motivation for complexity-based vul-
nerability analysis comes from the fact that complex-
ity is a fundamental property of information and can 
be universally applied.

Components of the analysis
The presentation and analysis of a Kolmogorov 
Complexity-based vulnerability analysis framework 
must accomplish several goals. As initially stated, the 
vulnerability analysis technique must demonstrate 
the ability to account for the innovation of an 
attacker. The presentation should also discuss the 
relationship to previously defined properties of secu-
rity. The technique should be based upon funda-
mental properties of information, rather than suffer 
from the combinatorial explosion that occurs when 
explicitly examining all possible events generated by 
specific systems. The vulnerability results should 

make intuitive sense; vulnerability is reduced by 
increasing the apparent complexity of access to 
information from potential attackers while increas-
ing vulnerability for less complicated, or in some 
sense shortest paths of access to information. In 
other words, low complexity implies high vulnerabil-
ity and high complexity implies low vulnerability. 
The results should not only be intuitively clear, but 
should support the rigorous definition of a metric 
space. 

Once this has been shown, a topological view of 
vulnerability can be demonstrated. This is demon-
strated by means of a Kolmogorov Complexity Map 
(K-Map) in which low complexity paths, which are 
likely to be easy for an attacker to follow, are identi-
fied. The concept of a K-Map, or complexity grid, is 
shown in Figure 73 and the K-Map for a specific 

example is derived later in this paper.
Figure 73 may itself appear quite complex upon 

first glance; however, focus upon individual parts of 
the figure in a logical progression. Begin with the 
information to be protected, which lies at the bot-
tom of the figure. Attacks are illustrated as the thin, 
downward-pointing arrows attempting to penetrate 
the system in order to manipulate the information. 
Numerous safeguards, supposedly designed to pro-
tect the information and each designed to mitigate 
particular types of attack, are shown as barriers with 
various levels of porosity (inserted across the middle 

Figure 73.  Conceptual view of a vulnerability and attack de-
tection complexity grid. 
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of the figure). The overall complexity of the system 
is illustrated by the surface contour located above 
the information and safeguards. The complexity of 
the system as a whole is comprised of the complexity 
of several entities, namely: the information itself, the 
complexity of the system in which the information 
resides and the complexity of the safeguards. Inno-
vative attacks will be more likely to successfully pene-
trate those areas of low complexity with easier to 
comprehend components of the system.

In addition, specific types of attacks, such as Dis-
tributed Denial of Service (DDoS) will appear as 
warps in the complexity grid. This is due the inher-
ent system correlation in DDoS attack-streams. The 
vulnerability analysis technique should be applicable 
in a highly dynamic and amorphous information 
environment. An active network environment is cho-
sen because information can be transmitted through 
an active network while its proportion of algorithmic 
content varies. In other words, static data, execut-
able code or various combinations of both can rep-
resent information. In addition, both forms of 
information should have high assurance. The assur-
ance of their interaction at a low level within an 
active network presents a nice challenge. 

An example application of vulnerability analysis 
should be demonstrated to validate the feasibility of 
the framework. This paper ends by demonstrating 
several applications enabled by the new vulnerability 
analysis framework. The first application of vulnera-
bility analysis shows that the complexity-based vul-
nerability framework enables Brittle Systems 
analysis. Brittle Systems analysis can be applied to 
understand the trade-off in performance versus fail-
ure of security. Finally, another application shows 
that complexity-based vulnerability analysis enables 
the optimization of security safeguards.

Properties of security
There have been many attempts to define security 
models that facilitate the proof of security 
properties [96]. The results in this paper focus upon 
what has been termed probabilistic, rather than pos-
sibilistic, security. Possibilistic security is concerned 
with proofs that given security properties can never 
be violated, while probabilistic security is concerned 
with estimating the likelihood that properties will be 
violated. The quantification of the insecurity that 
results from the successful exploitation of areas of 
weak security is referred to in this paper as vulnera-
bility. 

The security framework generally assumes that 
there are low-level and high-level users within a sys-
tem. The intuitive notion is that high-level users 
should be secure from low-level users. Security prop-
erties include non-inference: low-level users should 
not be able to infer information about high-level 
users, non-interference: high-level users are prevented 
from influencing the behavior of low-level users 
(otherwise, low-level users could infer information 
about high-level user activity), non-deducible output: 
low-level users cannot distinguish the events causing 
high-level users’ output, and finally separability: no 
interaction or information flow is allowed between 
low and high level users. Separability is too strong a 
security property because it does not allow low-level 
users to interfere with high-level users. This type of 
interference is acceptable, since it is assumed that 
information flow is allowed from low-level to high-
level users. The perfect security property allows infor-
mation to flow only from low to high-level users. 

While in theory these properties are useful in 
attempting to prove that a system is secure, anec-
dotal evidence suggests that few developers will 
expend the effort required to ensure that their sys-
tems meet these properties. The number of events 
that must be verified for possibilistic security results 
in a combinatorial explosion. In contrast, this work 
attempts to develop a quantification of the degree to 
which a system has achieved perfect security using 
fundamental properties of information, rather than 
proving perfect security. Security properties such as 
non-inference, non-interference, non-deducible 
output, and separability, define various mechanisms 
by which information flow, that is, information that 
could be inferred by one class of user about another 
class of user, is prevented. 

Similarly to previous work in this area, results in 
this work are based upon information flow gener-
ated by a low-level user, referred to as an attacker, 
inferring information about higher-level users. It is 
assumed that security is not discrete, but varies 
throughout a system and that attackers will want to 
follow paths of least resistance to obtain their objec-
tive. That is, an attacker will choose paths of least 
resistance with the possible constraint of optimizing 
for stealth or speed of attack. Probabilistic security 
has been explored in the past, however, obtaining 
values for probabilities of insecurity has generally 
been ill defined. This paper uses Kolmogorov Com-
plexity [97] as an underlying means to estimate inse-
curity probabilities. 
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3.4 VULNERABILITY METRICS WITH 
PHYSICAL ANALOGS

Vulnerability is generally defined as the probability 
of a successful attack multiplied by the damage done 
by the attack. The paper focuses on predicting the 
probability of successful attack against an informa-
tion system using fundamental properties of infor-
mation. Information properties with physical 
analogs are explored because (1) they are likely to 
yield laws of information that are fundamental to 
information, not specific to individual systems, (2) 
the properties provide deeper insight to informa-
tion assurance, and (3) they can be universally 
applied. Information properties that have physical 
analogs and that are candidates for fundamental 
parameters upon which to build information assur-
ance techniques are briefly discussed in this section. 

Volume
In his ground breaking 1949 paper, Shannon intro-
duced fundamental trade-offs and limitations on the 
ability to transmit information across a channel dis-
turbed by Additive White Gaussian noise 
(AWGN)[98]. This launched the science of informa-
tion theory that has transformed the study of com-
munications and coding of information. It also 
prompted the use of the term “bit” of information, 
which Shannon credits to J.W. Tuckey, into the 
mainstream literature. 

The idea that information can be quantitized into 
bits (or sequences of yes or no answers to questions) 
is now well accepted, and one measure of the size of 
information is the number of bits used to convey the 
information. Information compression coding - 
both loss-less and lossy - as well as forward error cor-
rection coding, alters the size of the information in 
terms of bits by removing or adding redundancy. 
However, the unit of size, bits, is the term used to dis-
cuss the size of information, whether it is efficiently 
coded, error prone or self-correcting. Thus, while it 
is possible for information to change size without 
altering content, size is a fundamental property of 
information.

Entropy
Shannon entropy [98], also a fundamental property 
of information, measures the uncertainty of a ran-
dom variable X based on the probabilities of each 
outcome. The entropy of a distribution defines the 
average per symbol compression bound in bits per 
symbol using a prefix free code. Entropy is derived 

from a given source distribution p of I symbols as 
shown in Equation (9). Kolmogorov Complexity, to 
be discussed in detail later, is estimated from an indi-
vidual sequence of information. These two parame-
ters are extremely powerful properties of 
information that occur at a fundamental level.

(9)

Density, mass and energy
Density and mass, and their relation to energy, are 
properties of matter that have parallel, and intu-
itively pleasing, meanings in the information 
domain. Much research has taken place on the mini-
mal energy required by an attacker to mount a suc-
cessful attack. Density, like Kolmogorov Complexity, 
may measure the ability of a sequence to be com-
pressed. Mass may simply represent the number of 
ones in a sequence, and energy, as in thermodynam-
ics, may tie together quantities such as mass, density 
or entropy. The goal is to find parameters that can 
be observed directly from information sequences 
and compare objective quantities on which to base 
the science of information assurance. In the analyti-
cal framework developed in this paper, Kolmogorov 
Complexity is analogous to mass that is used to for-
mulate a density metric.

Complexity
A contribution of the research presented in this 
paper is to utilize complexity, Kolmogorov Complex-
ity in particular, as a fundamental property of infor-
mation for vulnerability analysis. The definition of 
Kolmogorov Complexity rests upon the notion of a 
Turing Machine program. The Turing Machine is 
one of the most fundamental, general purpose com-
puting abstractions and is well known in computer 
science. The Turing Machine consists of a seven-
tuple (Q, T, I, δ, b, q0, qf). Q is a set of states, T is a set 
of tape symbols, I is a set of input symbols, b is a 
blank, q0 is the initial state, qf is the final state, d is 
the next move function, d maps a subset of Q × Tk to 
Q × (T × {L, R, S})k. L, R, and S indicate movement of 
the tape to the left, right, or remaining stationary, 
respectively. There can be multiple tapes. Thus d 
implements a “next move” function. Given a current 
state and tape symbol, d specifies the next state, the 
new symbol to be written on the tape and the direc-
tion to move the tape. One approach to the study of 
security is to consider the Turing Machine program 
as a representation of normal system operation. In 

H X( ) pi 2 pi( )log
i 1=

l

∑–=
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such an approach, if the T uring Machine program 
recognizes, or accepts, an input string, then a user 
has gained access to the system. If the Turing 
Machine program accepts a string that we did not 
anticipate (Si), then the system is vulnerable, as 
stated in Definition 1. Clearly, the Turing Machine 
program is an abstract representation of any proto-
col implementation, or operating component opera-
tion. The set of unanticipated input strings that is 
accepted is the vulnerability of the component (V) 
as shown in Lemma 1.

Throughout this paper the assumption is made 
that an attacker has the objective of exploiting any 
vulnerability that requires the attacker to under-
stand enough of the component to design a system 
attack. The attacker must determine the function 
performed by the Turing Machine program. In this 
case, the attacker is assumed to have the ability to 
observe every member of the input language in 
order to deduce operation by viewing the output. 
The attacker is actually inferring d. As d is inferred, 
more opportunities for attack may present them-
selves. 

Turing Machines and Kolmogorov Complexity
Information must be accessible to legitimate users 
while access is denied to potential attackers. This is 
accomplished by increasing the apparent complexity 
of access to information while providing legitimate 
users with enough a priori knowledge to reduce the 
apparent complexity. This leads one to conclude 
that complexity itself is a useful metric. However, the 
search for an absolute measure of complexity is a 
problem that may be equally as difficult as quantify-
ing information assurance. There is a good reason 
for this; they are, in a sense, one and the same. The 
results in this paper demonstrate how complexity 
can be estimated for use as a system-wide vulnerabil-
ity metric.

Kolmogorov Complexity is a measure of descrip-
tive complexity that refers to the minimum length of 
a program such that a universal computer can gen-
erate a specific sequence. Kolmogorov Complexity is 
described in Equation 10, where j represents a uni-
versal computer, p represents a program, and x rep-
resents a string. Universal computers can be equated 
through programs of constant length; thus a map-
ping can be made between universal computers of 
different types. The string x may be either data or 
the description of a process in an actual system. 
Unless otherwise specified, consider x to be the pro-
gram for a Turing Machine described in 
Definition 1. 

(10)

(11)

Conditional Complexity, in Equation 11, quanti-
fies the complexity of string x, given string y. Intu-
itively, it is the additional complexity of string x 
beyond that in string y. Conditional Complexity is 
used in developing the K-Map. A fundamental met-
ric, based upon Kolmogorov Complexity, used 
throughout the remainder of this paper is density. 
Density and its inverse, dispersion, are shown in Def-
inition 2. If x represents a program, then dispersion 
can be considered inefficiency in implementation in 
terms of size. A disperse implementation of a system 
has more transitions and states than necessary. Thus, 
there is greater opportunity for an attacker to find a 
weak point in the system. However, once an attacker 
breaks into a disperse system, there will be, on aver-
age, more energy, that is, longer string length, 
required to reach the attacker’s target. Greater dis-
persion should imply reduced brittleness (Defini-
tion 8) of resistance to attack.

Complexity as a Vulnerability Metric
Information assurance is increased by increasing the 
apparent complexity of access to information from 
potential attackers while providing legitimate users 
the least complex, or in some sense the shortest 

Definition 1: 
System 
Vulnerability

If a Turing Machine program 
recognizes, or accepts, a string, then 
the user entering that string is defined 
to have gained access to the system. If 
the Turing Machine program accepts a 
string that was not anticipated in the 
initial design of a system (Si), then the 
system is vulnerable.

Lemma 1: 
Secure 
Component

Given V= Si, a component is secure if 
and only if V=Ø.

Definition 2: 
Density

The density of x is K(x)/l(x), where l(x) 
is the length of x. Dispersion is the 
inverse of density.

Kϕ x( ) min  l p( )
ϕ p( ) x= 
 
 

=

Kϕ x y( )
min  l p( )
ϕ p x,( ) y=

∞ if there is no p such that ϕ p x,( ), y= 
 
 
 
 

=
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path, to access of infor mation. Figure 74 conceptu-

ally illustrates an instance of secure and insecure 
operation in a system. Secure and insecure opera-
tion exist to varying degrees in the space of all possi-
ble forms of operation, M. Insecure operation, MI, 
consists of those methods of operation that allow an 
information warfare aggressor entrance into, or 
access to control points, of the information system. 
The intended secure operation areas MS are well 
known and some of the insecure paths are also 
known. Note that MS and MI can, and usually do, 
overlap. However, the entire area of operation can 
be extremely large and an exhaustive search for all 
insecure operation is not feasible. 

In Figure 74, Euclidean distance corresponds to 
the degree of security. This leads one to consider a 
metric space upon which to base information assur-
ance. The initial approach assumes only that the 
metric has the characteristics of a metric in the 
mathematical sense as shown in Definition 3, where 
d is distance and p and q are points. 

As illustrated in the left side of Figure 74, an 
information system de-composed into many operat-
ing components could have a surface area as shown 
on the right side of Figure 74. Note that this surface 
is likely to change as a function of time, however, the 
time indices are not written for now. The points, p 
and q, are assumed to be relative to some absolute 
value; p and q can be security values in either differ-
ent locations or at different time instances of the sys-
tem. If d is a measure of security, then Definition 3.A 
implies that there is no difference in security 

between the same point and itself. However, there 
must be a difference between any two distinct points 
in the security space. Definition 3.B states that the 
measure between any two points in this space should 
be the same regardless of the order in which one 
takes the measurement. This means that, observed 
from a common viewpoint, if security is measured at 
two different points in this space, p and q, then the 
measure of security will be the same regardless of 
the order in which the points are entered in the 
measure.

It does not imply anything about the strength of 
an attack from p to q or an attack from q to p. It 
means, for example, that if p is less than q, then an 
attack from outside the system against p will be more 
likely to succeed than an attack against q. Finally, 
Definition 3.C states that the distance between any 
two points will be less than or equal to the sum of 
the distances between each of those points and a 
common third point. Again, remember that this is a 
measure of security taken from a view outside the 
system of a potential attack from outside the system. 

As discussed in more detail in the remainder of 
this report, the actual measure will change as an 
attacker penetrates the system and gains more 
knowledge of the system. Kolmogorov Complexity 
has been shown to possess the characteristics of a 
metric space [99] and in Section III an implementa-
tion is developed that generates a topology similar to 
Figure 74 for a given system.

If information assurance can be proven to reside 
in a metric space, or alternatively, if a metric space 
can be chosen in which information assurance can 
reside, then principles of mathematical analysis 
[100] can be used to rigorously determine more 
detailed characteristics. For example, M can be 
extremely large, possibly infinite. Are MS, or con-
versely, MI, open sets? If so, can limit points be 
defined? What does an open set mean with regards 
to information assurance and security? 

As a simple example, consider a password protec-
tion system. Each character that a legitimate user of 
the system adds to a password increases the number 
of possibilities that a brute force (non-dictionary) 
attack would require in order to guess the password. 
Thus, the longer the passwords or encryption keys, 
the more secure the system. While an infinite length 
password is not possible, security does begin to 
approach a limit point.

This can also be seen in any security safeguard 
that works via the increase of complexity. That is, 

Definition 3: 
Properties of an 
Information 
Assurance 
Metric

(A) d (p,q) > 0 if p ≠ q; d (p,p) = 0
(B) d (p,q) = d (p,q)
(C) d (p,q) ≤ d (p,r) + d (r,q) for any r 
∈ X

Figure 74.  Set Theory View of Secure Operation. 
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adding more non-redundant states to a T uring 
Machine program, given the definition of perfor-
mance in Definition 7, to increase security. This 
approach towards safeguard design approaches a 
limit point but can never reach perfect security. 
Security performance becomes less dense and less 
brittle. However, in general, this appears to be the 
only known approach, and thus limit points must 
exist. 

Topological Space for Information Assurance
By definition, an open set (E) is one in which every 
point is an interior point. A point, p, is an interior 
point of E if there is a neighborhood, N, of p such 
that . A neighborhood Nr(p) of point p consists 
of all points q such that N (p,q) < r where r is called 
the radius of the neighborhood. If security, as deter-
mined by a given metric, is an open set, then there 
are significant implications because of this. The best 
that can be hoped for in such a case is to determine 
limit points, because a distinct boundary between 
security and insecurity would not exist. Will it be the 
case that adding layers of security is much like add-
ing “open covers”, that is, the result can never be 
perfect security, but rather an approach to a limit 
point? The complement of an open set is closed; 
what does that imply for assessment of insecurity? 
Vulnerability analysis tools have been developed that 
assume all vulnerabilities have been identified and 
measured, and that the vulnerabilities can be manip-
ulated as discrete, closed sets. 

In order to determine whether such measure-
ments can be applied to information assurance, con-
sider topology, metric spaces, and the fundamentals 
of measurement theory in more detail. The defini-
tion below shows how the topology is induced by a 
metric d. In Definition 4, τ is a collection of subsets 
of X such that  and , any finite intersec-
tion of members of τ is in, and any union of mem-
bers of τ is in τ. Definition 5 illustrates the topology 
that will be induced. This is particularly important in 
the development of the K-Map discussed in detail in 
Section III. In the vulnerability framework presented 
in this paper, the metric (d) is density (K/L) in Defi-
nition 6.

The intuitive notion is that d represents the ease 
of movement of an intruder from one vulnerability 
to another vulnerability, where d (x,y): . A 
simple metric, as discussed previously, is to define d 
as the number of state/transition sequences, within 
a Turing Machine program representation of a sys-

tem, which an intruder can follow to move from vul-
nerability x to vulnerability y or equivalently the 
cardinality of the set of V from Lemma 3. Does infor-
mation assurance reside within this metric space? 
One test would be whether the metric supports the 
design tradeoffs required in determining brittleness 
in the design of the system. 

To answer the above question, let V be the set of 
currently exploited vulnerabilities. Most informa-
tion security approaches, including the one above, 
assume that all vulnerabilities have been discovered 
and measured. This can never be assumed to be the 
case. Performance (α) from Definition 7 is an open 
set, and as new security holes are discovered, 

. If V represents vulnerability and is open, 
then secure operation, , is closed. Assume 
that  for any x0. Note that x is now 
an element of the set of secure operations. In other 
words, the number of secure operations is bounded. 
It is well known that a set is compact if and only if it 
is closed and bounded. 

Building upon Definition 4 and Definition 5 
requires that Turing Machine program states (Q) be 
identified as either secure or insecure. If an attacker 
can reach a member of qInsecure then the attacker is 
considered to have performed a successful attack. If 
an attacker can never reach a member of qInsecure 
then the system is considered invulnerable. The 
challenge is that neither the attacker nor the 
defender knows the entire structure of the Turing 
Machine program, first because the attacker is 
unlikely to have complete knowledge of the 
defender’s system and also because even the 
defender may not fully understand the system that 
was developed. However, complexity estimation can 
be applied without requiring a detailed understand-
ing of the target system. The following section pre-
sents results on the feasibility of the complexity-
based vulnerability analysis technique by applying it 
to an active network.

N E⊂

∅ τ∈ X τ∈

X X× R→

Table 6

Definition 4: 
Metric Space

Let d be a metric on X. A metric space 
(X, d) is a topological space where the 
topology Ù is the smallest one that 
contains all sets of the form {y: d(x, 
y)<Â} for all x and Â.

Definition 5: 
Induced 
Topology

V is the set of vulnerabilities and (V,d) 
is the topology induced by the choice of 
information assurance metric.

α 0=
lim V ∞→

V
sup

x V∈
d ẋ x0,( ) ∞<
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3.5 BRITTLE SYSTEMS, DETERMINISTIC 
FINITE AUTOMATA, AND 
VULNERABILITIES

In order to understand the requirements for a vul-
nerability analysis metric; consider the manner in 
which systems that implement information assur-
ance can be designed using such quantification. 
Design involves the tradeoff of one benefit for 
another. Brittle Systems Theory provides a frame-
work for understanding the tradeoffs in perfor-
mance versus failure of information systems. 

Brittle systems analysis [108] is based on the idea 
that systems can fail in a manner analogous to brittle 
fracture of materials. A system can maintain very 
high performance until it fails quickly and cata-
strophically, as illustrated by performance curve Ph 
in Figure 75, or systems may fail by exhibiting lower 

performance in a gradual, more ductile manner as 
in curve Pl. The mapping between Brittle Systems 
Theory and information assurance is shown in Table 
1. This analysis can be directly applied to the Turing 
Machine program representation of a system. 
Changes in any of the state machine parameters, Q, 
T, I, δ, b, q0, qf, may modify the brittleness of the sys-
tem. For example, addition of a new state and transi-
tion could cause the system to behave in a more 
ductile or brittle manner. What is the measure of 
performance in a Turing Machine program model 
of information assurance? What does catastrophic 
failure mean in a Turing Machine program model of 
information assurance? 

In order to answer these questions, the perfor-
mance a from Definition 7 is resistance to attack and 
X in Figure 75 is effort required by the attacker. The 
answers to the above questions are intimately linked 
to the choice of metric. Based on Definition 1, one 
could choose the metric to be the number of 
state/transition paths available to an attacker to 
reach a particular target state, or equivalently, the 
cardinality of the set of strings (V) given in 

Lemma 1. Another possible metric could be the 
proximity of the attacker’s current state to the state 
that is the target of an attack. Note that later it is 
shown that K/L is a vulnerability measure and is 
related to |V|. Next, more detail on Brittle System 
analysis and how it relates to the complexity-based 
vulnerability metric is discussed using Finite Autom-
ata. 

A Deterministic Finite Automaton (DFA) consists 
of a 5-tuple (S, I, a, s0, F) where S is the set of states, 
I is the input alphabet, a is a mapping from S into I, 
s0 is the start state, and F is a subset of S called the 
final, or accepting states. A DFA is less powerful than 
a Turing Machine program. However, DFA have 
been well studied and facilitate a framework in 
which new theories related to information assurance 
can be studied. An example of Brittle Systems using 
Definition 1 for vulnerability is illustrated for the 
DFA shown in Figure 76. A single vulnerability is rep-

Figure 75.  Definition of brittleness: brittle versus ductile per-
formance. 

Definition 7: 
Information 
Assurance 
Performance.

Information assurance performance is 
the inverse of the vulnerability induced 
by the choice of metric, α = 1/ |V|. A 
nearly invulnerable system has nearly 
infinite performance and an extremely 
vulnerable system has nearly zero 
performance.

Figure 76.  Example deterministic finite automaton of a sys-
tem undergoing brittle analysis with the complexity-based 
vulnerability metric. 
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resented as a single modified transition, tfaulty. The 
modified transition represents an error in either the 
design or implementation that may allow an attacker 
to penetrate the system. The effect of each transition 
modified from its original source node to each possi-
ble destination node in the automaton is exhaus-
tively checked. The effort expended by an attacker is 
assumed to be proportional to the length of the 
strings used in the attack. In the application of brit-
tleness to vulnerability analysis, performance P is 
defined by a (Definition 7); X is defined by Als, 
which is the effort of an attacker measured in terms 
of string size required to reach an unintended 
accepting state. The algorithm requires starting with 
the actual system as represented in Figure 77, modi-

fying a transition and then recording the number of 
additional strings accepted. This is repeated for each 
transition in the base system. As shown in Figure 78, 
a modification of the transition from State 7, 
Input 3, Destination State 2, (7,3,2) yields a small 
number of vulnerabilities at string length two with a 
maximum of 1000 vulnerabilities at string length 8. 
This performance is ductile compared to the graph 
shown in Figure 78, where transition (1,3,1) is modi-
fied. Figure 78shows more brittle behavior because it 
takes a longer string length, thus more effort by the 
attacker to find vulnerabilities; however, the vulnera-
bility increases rapidly as the string length increases. 
A more precise definition of Brittleness is given in 
Definition 8. Brittleness, defined by the area given in 
the definition, is in units of Als/|V|. 

Definition 9 provides a means for easily comput-
ing complexity in the world of finite automata. Next 
the relationship between brittleness and complexity 

is addressed. One might intuit that a faulty transition 
in a less complex automaton will have less of an 
impact than a faulty transition in a complex version 
of the equivalent automaton. The definition of 
equivalent automata is given in Definition 10.

Figure 79 and Figure 80 show a simple and com-
plex implementation, respectively, of the same infor-
mation system. Figure 79, as a simple 
implementation, is what might be intuitively 
referred to as an inefficient implementation, 

Figure 77.  Ductile resistance to attack for system in Figure 79 
with fault (7, 3, 2). 

Definition 8: 
Brittleness.

The brittleness of a system is a relative 
measure based upon the size of the 
area defined by .from 
Figure 79, where A and B are 
normalized to have the same area and 
T is a tolerance range. In the operation 
below, T is defined as the width of the 
line formed by the intersection of A and 
B

Definition 9: 
Complexity of 
NDFA.

he complexity of a DFA or NDFA is the 
number of transitions in the smallest 
DFA that accepts the original language 
of the DFA.

Definition 10: 
Equivalence of 
Automata A and 
B.

Automatons A and B are equivalent if 
and only if A and B accept the same 
language.

Definition 11: 
Correlation 
between 
Brittleness and 
Complexity.

There is a correlation between 
brittleness and density. A dense system, 
being more highly optimized, will fail 
at a faster rate than a simple version of 
the same system. On the other hand, a 
simple system will, on average, have 
more opportunity for error, while those 
errors are less catastrophic.

Figure 78.  Brittle resistance to attack for system in Figure 79 
with fault (1, 3, 1). 
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because it contains many more states than necessar y. 
This yields the opportunity for more vulnerabilities 
and faults. However, it also requires more effort by 

the attacker, that is, a larger Als, to reach a given tar-
get. 

Figure 79.  A disperse (low density) DFA. Figure 80.  Implementation of the DFA in wFigure 84that ap-
proaches true complexity. 

Table 7 Brittle vulnerability analysis definitions  .

Materials Science Brittle Systems Information Assurance

Stress Amount parameter exceeds its toler-
ance

Applied force under the weight of an attack, AlsT

Toughness System Robustness Encryption strength and sensitivity of intrusion detectors

Ductility Level of Performance outside Toler-
ance

Ability of system to gracefully degrade given an attack,
Als /|V|: Als > AlsT

Plastic Strain Degradation from which the system 
cannot recover

Trojan horse

Brittle Fracture Sudden steep decline in perfor-
mance

Sudden catastrophic collapse of all information assur-
ance

Young’s Modulus Amount tolerance exceeded over 
degradation

Deformation Degradation in performance The amount by which vulnerability has been increased 
due to an attack, ˜ (1/|V|)

Brittleness Ratio of hardness to ductility; esti-
mated as difference in performance 
curves when outside tolerance

(Alsh
/|V|)-(Alsd

/|V|): (Alsh < AlsT
 and Alsd > AlsT

)

Ductile Fracture Graceful degradation in perfor-
mance

Ability of information to gracefully degrade under an 
attack

Reversible Strain Degradation from which the system 
can recover

Trojan horse detection and removal
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Figure 80 is a closer representation of the tr ue 
complexity of the same system. It has fewer opportu-
nities for failure; however, the failures that occur will 
have a more significant impact. In Figure 81 and 

Figure 82, brittleness and complexity are compared.

 Brittleness is computed as defined in Definition 
8. Performance is defined based upon the number 
of accepted strings and string size. The ratio of the 
number of accepted strings to total string size is 
inversely proportional to the performance. For each 
possible fault, this ratio is compared to a consistent 
base case consisting of an exponentially growing 
number of accepted words as the string size 

increases. A brittle system accepts few words initially, 
and then suddenly accepts a large number, while a 
ductile system accepts a moderate, but gradually 
increasing number with no sudden increase. The 
brittle measure is graphed as a function of a fault in 
the state specified on the dependent axis. A fault is 
generated by the re-connection of a single specified 
transition to a destination other than that which was 
originally specified. A single fault leads to many n-1 
possible faulty states where n is the number of origi-
nal states. Complexity is estimated as the number of 
transitions in the smallest representation of the 
resulting faulty system’s DFA. Comparing Figure 81 
and Figure 82, there appears to be an opposite rela-
tionship between brittleness and complexity. That is, 
a system with greater complexity results in lower brit-
tleness. Greater complexity indicates a larger num-
ber of transitions and states exist, thus there is more 
opportunity for an attack, but more effort is 
required by the attacker to successfully complete the 
attack. In Figure 83 and Figure 84 a similar analysis 

is performed on the more compact, or truer repre-
sentation of the complexity, of the same system. A 
system with an implementation whose size is closer 
to its true complexity is more brittle. The inverse 
relationship between complexity and brittleness 
holds in the more compact system (Figure 80) as 
well.

Hardness Level of Performance within toler-
ance limits

Resistance to decryption, Als /|V|: Als < AlsT

Table 7 Brittle vulnerability analysis definitions  (Continued).

Materials Science Brittle Systems Information Assurance

Figure 81.  Brittle measure of DFA shown in Figure 78 in dimen-
sions of Als/|V| versus tfaulty. 

Figure 82.  Complexity of DFA shown in Figure 78 in dimen-
sions of K(DFA) versus tfaulty. 

Figure 83.  Complexity measure of system shown in Figure 79 
in dimensions of K(DFA) versus tfaulty. 

67

Brittleness vs. Fault Location 

1     2     3    4     5    6     7     8    9    10   11   12   13   14   15 

Faulty Transition (t,a„|^) 

Complexity vs. Fault Location 

2    3    4     5    6    7     8    9    10   11   12  13   14   15 

Faulty Transition (t,a„^) 



 3. Kolmogorov Complexity as a Fundamental Metric Enabling Vulnerability Analysis

An impor tant result in this exploration of the 
relationship among vulnerability, complexity, and 

brittleness is that the greater the dispersion, the 
lower the brittleness. This suggests that larger sys-
tems, requiring traversal of larger numbers of states 
and transitions to reach an accepting state, or target 
of attack, require more effort to successful attack. A 
system that has a large amount of inherent complex-
ity cannot be designed more compactly than the 
length of its Kolmogorov Complexity. An intelligent 
attacker may be able to observe an inefficiently 
implemented system and reduce it to its most com-
pact form, that is, its Kolmogorov Complexity, thus 
easily identifying paths of attack to reach specific tar-
gets. A truly safe system is thus obtained, not by 
building inefficiency into the system, but rather, by 
making the view to the attacker as inherently com-
plex as possible. 

Figure 84.  Brittle measure of system shown in Figure 79 in di-
mensions of Als/|V| versus tfaulty. 
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4. Active Networks
Active Virtual Network Management Prediction enhance-
ment via Kolmogorov complexity estimation

Kolmogorov Complexity (K(x)) (see [10] for an 
introduction to Kolmogorov Complexity and [5], 
[6], [8], and [9] for applications) is the optimal 
compression bound of string x. This incomputable, 
yet fundamental property of information has vast 
implications in a wide range of applications includ-
ing network and system optimization, security, and 
Bioinformatics. Active networks [3] form an ideal 
environment in which to study the effects of 
tradeoffs in algorithmic and static information rep-
resentation because an active packet consists of both 
code and static data. A question active network 
application developers must answer is, “What is the 
optimal proportion of packet content that should 
be code versus data?” A method for obtaining the 
answer to this question comes from direct applica-
tion of Minimum Description Length (MDL) ([10] 
and [14]) to an active packet. Let Dx be a binary 
string representing x. Let Hx be a hypothesis, in algo-
rithmic form, that attempts to explain how x is 
formed. MDL states that the sum of the length of the 
shortest encoding of a hypothesis about the model 
generating the string and the length of the shortest 
encoding of the string encoded by the hypothesis 
will estimate the Kolmogorov Complexity of string x, 
K(x) ≈ K(Hx) + K(Dx|Hx). A method for determining 
K(x) separates randomness from non-randomness in 
x by incorporating non-randomness, which is com-
putable, as the shortest encoded program that repre-
sents the original string. The random part of the 
string represents the error, that is, the difference 
between the original string and the output of the 
encoded program. Thus, the goal is to minimize 
l(He) + l(Dx|He) + l(E) where l(x) is the length of 
string x, He is the estimated hypothesis used to 
encode the string (Dx) and E is the error in the 
hypothesis, Dx – (Dx | He). The more accurately the 
hypothesis describes string x, the shorter the encod-
ing of the string. An active packet is measured as 
shown in Figure 85, where choosing an optimal pro-
portion of code and data minimizes the packet 
length. The goal is to learn how to optimize the 
combination of communication and computation 

enabled by an active network. Clearly, if is estimated 
to be high for the transfer of a piece of information, 
then the benefit of having code within an active 
packet is minimal. On the other hand, if the com-
plexity estimate is low, then there is great potential 
benefit in including it in algorithmic form within 
the active packet. When this algorithmic informa-
tion changes often and impacts low-level network 
devices, then active networking provides the best 
framework for implementing solutions (a specific 
example of separating non-randomness from ran-
domness, although not explicitly stated as such, can 
be found in mobility management as discussed in 
[3] and [11]).

An active packet that has been reduced to the 
length of the best estimate of the Kolmogorov Com-
plexity of the information it transmits will be called 
the minimum size active packet. When the mini-
mum size active packet is executed to regenerate 
string x, the Dx | He portion of the packet predicts x 
using static data () to correct for inaccuracy in the 
estimated hypothesis. There are interesting relation-
ships between Kolmogorov Complexity, prediction, 
compression and the Active Virtual Network Man-
agement Prediction (AVNMP) mechanism 
described in [3]. These relationships are discussed 
and experimentally validated throughout this paper. 
The next section provides an overview of AVNMP 
before discussing its relationship to Kolmogorov 

Figure 85.   Algorithmic content. 
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Complexity2. After required relevant background on 
AVNMP is explained, the relationship to Complexity 
Theory is developed beginning from a high level 
overview, then driving down into detailed relation-
ships and experimental results. 

4.1 ACTIVE VIRTUAL NETWORK 
MANAGEMENT PREDICTION OVERVIEW

The Active Virtual Network Management Prediction 
(AVNMP) architecture provides a network predic-
tion service that utilizes the capability of Active Net-
works to easily inject fine-grained models into the 
communication network to enhance network per-
formance. AVNMP, injected into the network as an 
active application, is capable of modeling load and 
propagating state information in a manner that 
meets the demand for accuracy at a particular active 
node. Greater demand for prediction accuracy is 
met at the cost of AVNMP performance, that is, the 
ability of AVNMP to predict farther into the future. 
While this paper focuses on network traffic and load 
prediction, an AVNMP application to predict CPU 
utilization for Active Networks in collaboration with 
National Institute of Standards and Technology 
([4], [12] and [13]) has been demonstrated. The 
inherently distributed nature of communication net-
works and the computational power unleashed by 
the Active Networking paradigm have been used to 
mutual benefit in the development of the Active Vir-
tual Network Management Prediction mechanism. 
Active Networks benefit from AVNMP by continu-
ously receiving information about potential prob-
lems before they occur. 

AVNMP benefits from Active Networks in many 
ways. The first, and most practical way, is the ease of 
development and deployment of this novel predic-
tion mechanism. This could not have been accom-
plished so quickly or easily given today’s closed, 
proprietary network device processing. Another 
benefit is the fact that network packets now have the 
unprecedented ability to control their own process-
ing. Great advantage was taken of this new capability 
in AVNMP. Virtual messages, varying widely in con-
tent and processing, can adjust their predicted val-
ues as they travel through the network. Finally, 
Active Networks add a level of robustness that can-
not be found in today’s networks. This robustness is 
due to the ability of AVNMP system components, 
which are active packets, to easily migrate from one 

node to another in the event of failure -- or the pre-
diction of failure provided by AVNMP itself.

The desired characteristics of AVNMP are large a 
Lookahead time, high prediction accuracy, low over-
head and robust operation. Each of these character-
istics is inter-related and a suitable tradeoff needs to 
be determined during configuration of the system. 
The AVNMP experimental validation configuration 
for the initial test discussed in this paper is a feed 
forward network consisting of a host containing the 
Driving Process and four intermediate active net-
work nodes containing Logical Processes as shown 
in Figure 86. AH-1 and AH-2 are host nodes and AN-

1 through AN-5 are active network nodes. The edges 
between the nodes represent links between the 
labeled ports on each node. All nodes are Sun 
Sparcs running the Magician active network execu-
tion environment. The AVNMP system parameters 
were configured as shown in Table 8. In this experi-
ment AVNMP is predicting the packet input and out-
put rate for each link at each node, from an 
application residing on AH-1 that is transmitting an 
active audio packets.

2. Current project progress and experimental code is maintained in http://www.research.ge.com/~bushsf/ftn.

Table 8 AVNMP Parameters

Sliding Window Loo-
kahead Length

200 seconds

Virtual Message Gen-
eration Rate

0.5 virtual messages/millisec-
ond

Virtual Message Step 
Size

20 seconds

Tolerance 500 Messages/second 
(reduced by half periodically)

Ratio of Virtual to Real 
Messages

1 virtual message/real message

Figure 86.  Experimental configuration. 
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The State Queue plot, Figure 87, shows the pre-
dicted traffic load values cached in the State Queue 
as a function of LVT and Wallclock. As Wallclock 
approaches any given Local Virtual Time, the pre-
dicted load values converge towards the actual load. 
The general operation is illustrated in the next five 
graphs where all measurements, unless otherwise 
indicated, are from node AN-4. These curves vali-
date intuitive trends in the operation of AVNMP. 
Figure 88 shows the reduction in tolerance versus 
time that is pre-programmed into each Logical Pro-
cess. The Y-axis is the tolerance that is demanded 
between the predicted value and the actual value of 
an SNMP packet counter. This value is decreased 
purposely in this experiment in order to create a 
greater demand over time for accuracy and thus cre-
ate a challenging validation of the AVNMP system 
under gradually increasing stress. In Figure 89 the 
proportion of out-of-tolerance messages is shown as 
a function of Wallclock. The Y-axis is the proportion 
of messages that arrived at a specific node out of tol-
erance, that is, the actual value exceeded the pre-
dicted value by an amount greater than the 
tolerance setting. As Wallclock progresses, the toler-
ance is purposely reduced causing a greater likeli-
hood of messages exceeding the tolerance. This is 
done in order to validate the performance of the sys-
tem as stress, in the form of greater demand for 
accuracy, is increased. Figure 90 shows the predic-
tion error as a function of Wallclock. The Y-axis is 
the difference in the number of packets received 
versus the number of packets predicted to have been 
received. This graph verifies that the system is pro-
ducing more accurate predictions as the demand for 
accuracy increases. However, the Y-axis of Figure 91 
shows the Lookahead decreasing versus Wallclock. 
The expected Lookahead time is the difference 
between Wallclock and the Local Virtual Time at a 
particular node. The demand for greater accuracy 
reduces the distance into the future that the system 
can predict. Finally, in Figure 92, speedup, the ratio 
of virtual time to Wallclock of the real system, is 
shown as a function of Wallclock. The speedup is 
reduced as the demand for accuracy is increased. As 
previously mentioned, only for purposes of this 
experiment, the tolerance is being reduced as 
Wallclock progresses, causing the accuracy to 
increase while loosing performance in terms of 
speedup and Lookahead.

AVNMP overhead
AVNMP has the potential to generate two forms of 
overhead, processing overhead and bandwidth over-
head. If the predicted results are within the user 
specified error tolerance and the user fully utilizes 
the predicted results, then overhead is at a mini-
mum. The question of overhead versus benefit 
becomes one that depends upon the perceived util-
ity of predictive capability and depends significantly 

Figure 87.  State queue. 

Figure 88.  Tolerance setting decreases as wallclock in-
creases thus demanding greater accuracy. 

Figure 89.  Demand for greater accuracy causes the propor-
tion of out-of-tolerance messages to increase. 
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upon the manner and application in which it is 
used. It is the author’s belief that load and process-
ing prediction are of particularly great importance 
in Active Networks where routing is based upon not 
only load, but the processing capability required by 
active applications. In this section, the load predic-
tion application example is continued with overhead 
results displayed in terms of processing time and 
number of packets transmitted. The expected ANEP 
[3] packet size measured during the test was 1000 
bytes.

Task execution time and message overhead
The task execution time is the Wallclock time the 
system spends executing a non-rollback message. It 
was expected that task execution time would be 
essentially constant; however, it increases in direct 
proportion to the number of rollbacks as shown in 
Figure 94. This is caused by the lack of fossil collec-
tion. The increase in the number of values in the 
State Queue is causing access of the State Queue and 
MIB to slow in proportion to the queue size. 
Figure 93 displays the number of virtual messages 
versus Wallclock and Figure 95 displays the total 
number of anti-messages. This is expected to 
increase over time. This value is reset every time the 
tolerance is tightened (every 5 minutes in this case).

AVNMP robustness
AVNMP consists of two main types of active packets: 
AvnmpLP, which is the Logical Process, and Avnmp-
Packet, which is the virtual message. If an AvnmpLP 
packet is dropped, the destination node will not 
have the capability to work forward in time or for-
ward virtual messages. Thus, AVNMP features will 
not be available on the node and accuracy of other 
nodes may be reduced. If an AvnmpPacket is dropped 
or unexpectedly delayed, accuracy will be reduced 

Figure 90.  Predictions become more accurate…. 

Figure 91.  …at the expense of lookahead…. 

Figure 92.   …and speedup. 

Figure 93.  Number of virtual messages versus wallclock. 

Figure 94.  Expected task execution time as a function of 
wallclock. 
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because the State Queues of downstream nodes will 
lack a predicted value. However, AVNMP will con-
tinue to operate. In the next section the role of com-
plexity in understanding prediction is discussed.

4.2 TOWARDS COMPLEXITY
AVNMP can provide early warning of potential prob-
lems; however, the identification of a solution and 
marshaling of automated solution entities within an 
active network has not yet been fully addressed. This 
project has begun to lay the groundwork for such 
automated composition of management solutions 
within an active network [3]. This direction is being 
carried forward by exploration of a relatively unex-
plored area –understanding the benefits of active 
networking, Algorithmic Information Theory, and 
its close companion, Complexity Theory. To our 
knowledge, this work is the first to propose and 
begin investigation into the newly available process-
ing power of Active Networks through the concept 
of Complexity and Algorithmic Information (“Strep-
tichrons”) as shown in Figure 96. Legacy networks, 
which are today’s passive networks, have been 
designed to optimize transmission of passive data 
using bit compression based upon the underlying 
notion of Shannon Entropy. AVNMP has shown that 
active networks allow for the possibility of executable 
models and that the corresponding information 
packets might be best studied with Kolmogorov 
Complexity as the underlying theory. It is serendipi-
tous that Complexity Theory has been receiving 
more attention lately and is making significant theo-
retical progress at the same time that research into 
active networking is taking place. Active networks 
provide a new paradigm and enhanced capabilities, 
which, when combined with ideas from Algorithmic 
Information Theory [10], might lead to superior, 
innovative solutions to problems of network man-
agement. One possible approach proposes to com-

bine Kolmogorov Complexity with the science of 
Algorithmic Information Theory (sometimes called 
Complexity Theory) to build self-managed networks 
that draw on fundamental properties of information 
to identify, analyze, and correct faults, as well as 
security vulnerabilities, in a distributed information 
system [8],[9]. Specifically, we suspect that complex-
ity measures can be used to detect and analyze prob-
lems in a network, and to facilitate techniques to 
remedy network faults. We also envision that Kol-
mogorov Complexity can be applied directly to 
improve the performance of AVNMP. In [5] and [6] 
the concept of monitoring the change in Kolmog-
orov Complexity of a system was first introduced for 
Information Assurance.

According to Complexity Theory, the complexity 
of an information unit is the size of the smallest pro-
gram capable of producing the unit. Similarly, Algo-
rithmic Information Theory defines the complexity 
of an information unit to be the unit’s length (after 
the unit has been compressed to the maximum 
extent possible). These two views can be related 
through theory. In general, complexity is not com-
putable; however, the bounds on complexity tighten 
continuously as fundamental research in Kolmog-
orov Complexity progresses. For example, the Mini-
mum Data Length (MDL) [14] estimate for 
Kolmogorov Complexity considers that the best 
measure for complexity of an information unit mini-
mizes the sum of the length of the description of a 
theory that produces the unit and the length of the 
unit encoded using the theory. In this section, we 
use MDL as one approach to estimate Kolmogorov 
Complexity, and we suggest its application as a 
means to improve the performance of AVNMP. 

Figure 95.  Number of anti-messages versus wallclock. 

Figure 96.  Active networks and legacy networks as viewed 
by AVNMP. 
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One potential drawback to AVNMP, gently 
pointed out earlier in this paper, is fact that AVNMP 
itself consumes resources in an effort to predict 
resource usage in a network. Resource consumption 
by AVNMP is tied directly to accuracy: higher accu-
racy costs more in terms of bandwidth utilization, 
associated with simulation rollbacks and the con-
comitant transmission of anti-messages. Despite this 
relationship, potential exists to nearly reach the the-
oretical minimum amount of bandwidth to achieve 
the maximal model accuracy. This possibility arises 
because AVNMP consists of many small, distributed 
models (each a description of a theory) that work 
together in an optimistic, distributed manner via 
message passing (data). Each AVNMP model can be 
transferred, using Active Networks, as a Streptichron 
[3], which is any message that contains an execut-
able model in addition to data. Using Streptichrons, 
the optimal mix of data and model can be transmit-
ted to closely approximate the minimum MDL. 
Achieving maximal model accuracy at minimal 
bandwidth provides the best AVNMP accuracy at the 
least cost in AVNMP resource consumption.

Other possibilities exist to exploit Kolmogorov 
Complexity to improve AVNMP performance. For 
example, one can apply the MDL technique to the 
rollback frequency of all the AVNMP enhanced 
nodes in a network. A low rollback complexity 
(which suggests a high compressibility in the 
observed data) would indicate patterns in the roll-
back behavior that could be corrected relatively eas-
ily by tuning AVNMP parameters. High complexity 
(low compressibility) would indicate the lack of any 
computable patterns, and would suggest that little 
performance improvement could be achieved by 
simply tuning parameters. Thus, we hypothesize that 
our tuning gradient should be guided toward 
regions of high complexity, which suggests that we 
can tune parameters to improve the rollback fre-
quency. The next section focuses upon experimental 
results relating prediction to complexity gathered 
from the operation of the AVNMP system.

4.3 AVNMP AND KOLMOGOROV 
COMPLEXITY

In AVNMP, information that impacts the network is 
transmitted based upon prediction at a low level 
within the network. Thus, AVNMP allows experi-
mentation in defining the boundaries within which 
active networking is beneficial. In Figure 97 an 
active and passive form of AVNMP is represented. 

The passive case is represented in the upper portion 
of the figure. In the passive case, actual data (Dx) is 
observed at the Driving Process. A hypothesis is 
formed about the data, and predicted data (Dy) is 
generated in the form of static virtual messages. The 
term static indicates that information content within 
the message contains no executable code. When 
error in the hypothesis exceeds a preset threshold, 
AVNMP causes rollbacks to occur in order to adjust 
for the inaccuracy. In the lower portion of Figure 97, 

the hypothesis is included within each packet and is 
used to encode within the code portion of the active 
packet.

What is the relationship between the estimated 
operating hypothesis (He) in the AVNMP packet 
encoding and as the predictor in the Driving Pro-
cess? First, they are the same hypothesis. Second, it 
has been shown [10] that the shorter the packet, the 
better the predictor. Conversely, the worse the pre-
diction, the longer the value is within the AVNMP 
packet encoding. Can Active Virtual Network Man-
agement Prediction benefit from the fact that the 
smallest algorithmic form is also the most likely pre-
dictor of a sequence? This can come about because 
Driving Processes and Streptichrons (active virtual 
messages anticipating events in the future) benefit 
by being both small and accurate as shown in 
Figure 98. The objective is to increase the rate of 
convergence of the predictions held within the State 
Queue to converge to the actual value that will occur 
in the future, and to converge to the value before it 
actually exists. Actual and predicted values within a 
particular instance of a State Queue were shown in 

Figure 97.  Active versus passive form of AVNMP. 
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Figure 87. Let us examine A VNMP results in light of 
complexity in more detail in the next section.

Load prediction and complexity in active 
virtual network management prediction
Our Active Network Kolmogorov Complexity estima-
tor is currently implemented as a quick and simple 
compression estimation method. It returns an esti-
mate of the smallest compressed size of a string. It is 
based upon computing the entropy of the weight of 
ones in a string. Specifically it is defined in 
Equation 12

(12)

where x#1 is the number of 1 bits and x#0 is the 
number of 0 bits in the string whose complexity is to 
be determined. Entropy is defined in Equation 13.

(13)

 See [7] for other measures of empirical 
entropy and their relationship to Kolmogorov 
complexity. The expected complexity is asymp-
totically related to entropy as shown in 
Equation 14.

(14)

Load prediction data sampled from execution of 
AVNMP is analyzed relative to several hypotheses. 
The goal is to use a simple example to demonstrate 
the relationship among accuracy of hypotheses, 
complexity, and compression. The initial hypothesis 
(regardless of naiveté in choice of hypothesis) is that 
the data can be characterized by a simple linear 

extrapolation based upon the last sampled load val-
ues. This is shown in Figure 99 where the gray boxes 
are actual load samples and the black stars are pre-
dicted load samples. Note that the predicted load is 
based upon a short history shown in the graph as the 
initial match between predicted and actual load.

Various enhancements are added to the initial 
hypothesis. In this specific case, a running average 
was used to smooth the data before the extrapola-
tion. The size of the running average defines a 
hypothesis. Each enhancement is considered a new 
hypothesis (He) in this experiment. In Figure 100, 
for each the sum of the error in predictions is 
graphed as the gray boxes in the lower portion of 
the graph. The compressed size of the correspond-
ing error is plotted as the black stars in the upper 
portion of the figure. Clearly a better hypothesis 
concerning the origination of the data results in bet-
ter prediction and greater compression, while poor 
hypotheses result in inaccurate prediction and 
reduced compression. This provides a concrete 
demonstration of the relation between complexity 
and prediction accuracy.

It is hypothesized that the greater the complexity, 
the greater the error in prediction, and thus the 
greater the likelihood of AVNMP rollback. In order 
to validate this hypothesis, load prediction error 
from AN-1 (see the experimental configuration 
shown in Figure 86) within the network is compared 
with the estimated complexity of the actual load. In 
Figure 101 the load prediction error is plotted with 
the estimated complexity versus Wallclock where val-

Figure 98.  Better Prediction Implies Smaller Packets Implies 
Better AVNMP Performance Implies Better Prediction. 
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Figure 99.  Load Prediction Hypothesis. 

Figure 100.  Simple AVNMP Hypotheses for Load Prediction. 
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ues are taken over intervals of the same length as the 
Sliding Lookahead Window shown in Table 8. 
Larger error, and thus more likely rollback, occurs 
during periods of relative high complexity, while 
complexity is low during periods of low error.

Prediction convergence and complexity
Predictions within the State Queue form a sequence 
that AVNMP is trying to predict. This is represented 
in more detail in Figure 102. The goal of the roll-
back mechanism is to cause the predicted values to 
converge to the best-predicted estimate. In AVNMP, 
the Driving Process is the model, or MDL hypothe-
sis. The virtual messages generated by the Driving 
Processes may be active, containing small hypotheses 
within themselves as previously discussed in the bot-
tom of Figure 97. 

The definition of Global Virtual Time, GVT(t), 
can be applied to reason about the information con-
tained in the State Queue. Consider task execution 
time (τtask), which is the time taken by a logical pro-
cess to generate a predicted value given an input 
message, the Wallclock time at which a particular 
state was cached (τSQ), and Wallclock time (t). Let 
PSQ be the predicted time that event SQ will occur. 
Let f(τ) be the prediction hypothesis of a Driving 

Process such that f(τ) predicts a value for time τ 
where τ ≥ t. Consider a predicted value (Vv) that is 
cached at time in the State Queue resulting from a 
particular predicted event. As rollbacks occur, values 
for a particular predicted event may change, con-
verging to the real value (Vr). For correct operation 
of Active Virtual Network Management Prediction, 
should approach as t approaches GVT(t). Explicitly, 
this is ∀ε > 0∃δ : 0 <| f(t) – f(GVT(t)) | < ε implies that 
0 <|(GVT(t)) – t|<δ where f(t) = Vr and f(GVT(t)) = 
Vv. Because Active Virtual Network Management 
Prediction always uses the correct value when the 
predicted time (p) equals the Wallclock (t) and it is 
assumed that the predictions become more accurate 
as the predicted time of the event approaches the 
current time, the reasonable assumption is made 
that limt→p f(t) = Vr. In order for the Active Virtual 
Network Management Prediction system to always 
look ahead, ∀t: GVT(t) ≥ t. This means that

 and where m 
is the receive time of a message, M is the set of mes-
sages in the entire system and  is the LVT of 
the nth Logical Process. In other words, the Local 
Virtual Time of each process must be greater than or 
equal to Wallclock and the smallest message not yet 
processed must also be greater than or equal to 
Wallclock. The smallest message could cause a roll-
back to Wallclock. This implies that 

. In other words, this implies that 
the Local Virtual Time of each driving process must 
be greater than or equal to Wallclock. An out-of-
order rollback occurs when m < LVT(t). The largest 
saved state time such that PSQ < m is used to restore 
the state of the Logical Process, where PSQ is the 
time the state was predicted to occur. Then the 
expected task execution time (τtask) can take no 
longer than Ptask – t to complete in order for GVT(t) 
to remain ahead of Wallclock. Thus, a constraint 
between expected task execution time (τtask), the 
predicted time associated with a state value (PSQ), 
and Wallclock (t) has been defined. As He improves 
there will be a reduction in the number of rollbacks, 
a smaller value in the packet encoding, and shorter 
Streptichrons. 

Self-regulation via complexity
As predictions become more inaccurate in AVNMP, 
virtual messages should slow down, rather than bur-
den the system with potential rollbacks. Poorly pre-
dicted messages will naturally be larger in their 

Figure 101.  Estimated Complexity and Error within AVNMP. 

Figure 102.  Converging Predictions. 
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 4. Active Networks

minimum size, which slows down their rate of propa-
gation in proportion to their inaccuracy.

Another issue concerns a mechanism for feed-
back to the Driving Process in order to improve. 
Such a feedback mechanism can be based upon 

input from the complexity estimate, or minimum 
encoded packet size, of virtual messages. The 
hypothesis is adjusted in a manner that drives the 
system towards minimizing encoded virtual message 
size.

78



5. Fault Identification and Extraction
Active Virtual Network Management Prediction 
(AVNMP) [16], provides predicted state within each 
node of a network based upon a correct estimated 
operating hypothesis, He. The AVNMP architecture 
provides a network prediction service that utilizes 
the capability of Active Networks to easily inject fine-
grained models into a communication network to 
enhance network performance. AVNMP, injected 
into the network as an active overlay network, is a 
simulation of the actual network, but running tem-
porally ahead of the actual network. AVNMP is capa-
ble of modeling load and propagating state 
information in a manner that meets the demand for 
prediction accuracy at a particular active node at the 
expense of overhead due to rollback in order to cor-
rect for prediction inaccuracy. Thus, prediction 
accuracy is met at the cost of AVNMP performance, 
that is, the ability of AVNMP to predict farther into 
the future. An AVNMP application to predict CPU 
utilization for Active Networks has been demon-
strated in collaboration with National Institute of 
Standards and Technology in [17], [35] and [36]. 
The inherently distributed nature of communica-
tion networks and the computational power 
unleashed by the Active Networking paradigm have 
been used to mutual benefit in the development of 
the Active Virtual Network Management Prediction 
mechanism. Active Networks benefit from AVNMP 
by continuously receiving information about poten-
tial problems before they occur. In this paper, the 
groundwork is laid for using a Kolmogorov Com-
plexity estimate to drive the optimal generation and 
composition of solutions. System faults are repre-
sented in algorithmic form. Reversible code is then 
developed to remove the effect of faults in a system. 
The application in this paper focuses on an active 
network in which information, algorithmic and 
static, can be transmitted in a fine-grained manner.

Kolmogorov Complexity (K(x)) (see [30] for an 
introduction to Kolmogorov Complexity and [18], 
[21] [28] and [29] for applications) is the optimal 
compression bound of string x. This incomputable, 
yet fundamental property of information has vast 
implications in a wide range of applications includ-
ing network and system optimization, security, and 
Bioinformatics. An active network [16] provides a 
suitable environment in which to study the effects of 
tradeoffs in algorithmic and static information rep-

resentation because an active packet consists of both 
code and static data. An active network enables pack-
ets to perform computation at the intermediate 
nodes in addition to its communication capabilities. 
This enables application developers to design novel 
network services and protocols that can trade-off 
communication and computation as the packet 
traverses the network. Therefore, to ensure best per-
formance, active network developers have to effec-
tively answer the question, “What is the optimal 
proportion of the code size in a packet with respect 
to its data payload?” A method for obtaining the 
answer to this question comes from direct applica-
tion of a technique called Minimum Description 
Length Minimum Description Length (MDL) 
[37],[30] to an active packet. Let be a string of bits 
representing x. Let be a hypothesis, or algorithm, 
that attempts to explain how is formed. MDL states 
that the sum of the length of the shortest encoding 
of a hypothesis about the model generating the 
string and the length of the shortest encoding of the 
string encoded by the hypothesis will estimate the 
Kolmogorov Complexity of string x. A method for 
determining separates randomness from non-ran-
domness in x by incorporating non-randomness, 
which is computable, as the shortest encoded pro-
gram that represents the original string. The ran-
dom part of the string represents the error, that is, 
the difference between the original string and the 
output of the encoded program. Thus, the goal is to 
minimize where is the length of string x, is the esti-
mated hypothesis used to encode the string () and is 
the error in the hypothesis. The more accurately the 
hypothesis describes string x, the shorter the encod-
ing of the string. An active packet is measured as 
shown in Figure 103, where each packet conveys the 
same information; however, the length varies with 
the choice of the proportion of code and data. This 
in turn is governed by the hypothesis chosen to rep-
resent the data. The better the hypothesis, the lesser 
the “error” made in representing the data. In the fig-
ure, H1 is the worst hypothesis as the “error” and 
hence the packet size is the largest. On the other 
hand, H4 presents the best hypothesis for the data 
and hence the packet size is the smallest. The goal is 
to learn how to optimize the combination of com-
munication and computation enabled by an active 
network. Clearly, if is estimated to be high for the 
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transfer of a piece of infor mation, then the benefit 
of having code within an active packet is minimal. 
On the other hand, if the complexity estimate is low, 
then there is great potential benefit in including it 
in algorithmic form within the active packet. When 
this algorithmic information changes often and 
impacts low-level network devices, then active net-
working provides the best framework for implement-
ing solutions. In the next section, the relationship 
among AVNMP, Kolmogorov Complexity, and fault 
behavior are examined in more detail.

5.1 AVNMP AND FAULT PREDICTION
The Active Virtual Network Management Prediction 
mechanism (AVNMP) [16] requires the injection of 
models, or hypotheses, that describe the operation 
of the system assuming no fault exists. An example 
derivation of a non-fault-operating hypothesis and 
its relationship to Kolmogorov Complexity is dis-
cussed in [155]. When Wallclock time reaches a pre-
dicted state time, verification is made to determine 
whether the predicted value deviates beyond a pre-
set tolerance from the actual value. If the prediction 
is accuracy fails to fall within the tolerance, an out-
of-tolerance rollback occurs. Out-of-tolerance roll-
backs in AVNMP are due to inaccurate prediction 
and thus are related to error, or inability of the 
hypothesis in MDL to fully capture all patterns in a 
string. The rollback mechanism, which is also corre-
lated to the length of E, Figure 103, in the encoded 
packet as discussed in [155], accounts for random-
ness. That is, randomness is defined as information 
incapable of being compressed algorithmically and 
cannot be defined algorithmically, and thus cannot 
be predicted. This results in a higher Kolmogorov 
Complexity as experimentally validated in [155]. 

However, a fault occurring in the system will appear 
as a deviation from the non-fault-operating hypothe-
sis. The fault will induce the appearance of greater 
randomness, or higher Kolmogorov Complexity 
because actual events will not fit the initial estimated 
hypothesis (He). This will cause an increase in roll-
back frequency and a longer value in the encoded 
packets. Most Bayesian Belief Networks take the 
opposite approach by developing fault hypotheses 
(Hf) rather than a correct operating hypothesis. 
Clearly an approach based upon handcrafting fault 
hypotheses assumes one can predetermine and char-
acterize all possible faults, a large and difficult task. 
The goal of this project is self-healing, in which the 
system automatically aligns itself with the correct 
operating hypothesis in the presence of unantici-
pated faults.

A potential complication that arises when AVNMP 
is viewed in this manner is that is, by definition, only 
an estimate of the correct operation of the actual sys-
tem. Rollbacks, randomness and occur as a result of 
the deviation ofHe from H, where is the true and 
complete hypothesis describing the system. The 
question arises as to how to distinguish between ran-
domness due to a faulty operating hypothesis and an 
actual fault. Figure 104 illustrates the dichotomy. In 

the upper portion of the figure, the virtual system 
runs ahead of Wallclock time such that Global Vir-
tual Time (GVT), that is the estimate of time to 
which the entire AVNMP system has advanced, pro-
ceeds at a faster rate than Wallclock. The physical 
system, in the lower portion of the figure proceeds 
at the rate of Wallclock. In order to correct the vir-
tual system, anti-messages, in the form of reversible 
code [20], can be transmitted. This reduces the for-

Figure 103.  Algorithmic content. 

Figure 104.  Self-correcting simulation versus fault correction 
within the actual system. 
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ward execution rate of the vir tual system in an 
attempt to bring the virtual system, based upon an 
estimated hypothesis (He), closer to the actual sys-
tem operation described by hypothesis H. Alterna-
tively, in the real system, anti-faults in the form of 
reversible code can be generated to move the actual 
system () towards the estimated hypothesis (He). 
The next section considers anti-faults in more detail.

5.2 ALGORITHMIC FAULT DETECTION AND 
GENERATION

There are at least three reasons why an algorithmic 
description of a fault is desirable. First, constructing 
the smallest algorithmic representation of a fault 
indicates its complexity, which is valuable informa-
tion. Complexity is important information because it 
is an indicator of both the type of fault and level of 
difficulty in correcting the fault and the severity of 
the fault; fault severity is important in triage opera-
tions to optimize system health. Second, a more 
compact algorithmic representation of a fault will 
travel faster and more rapidly through the network; 
it is an efficient format for alerting system manage-
ment and in triggering automated solutions. Third, 
it is relatively easy to reverse the code of an algo-
rithm, possibly generating an anti-fault, or solution 
to a problem in certain cases. Reversible code has 
been presented in previous work as a mechanism for 
generating anti-messages in Time Warp simulation. 
In this section the behavior of complexity with 
regard to code and anti-code is discussed as well as 
results leading towards the use of reversible code for 
self-composing solutions.

The proposed hypothesis is that the Kolmogorov 
Complexity of a combined fault and solution 
description is minimized when the optimal solution 
to mitigate the fault is composed. A nearly trivial 
example can be seen with reverse code. Assume that 
fault data, F exists. Assume that the fault does not 
erase any data but merely transforms it. Define the 
algorithmic description of the fault data PF(). The 
reverse code forPF() will be labeled RPF(). 
AssumePF() and RPF()are minimal length programs. 
Then, RPF(PF())= φ where φ is the empty set. RF is the 
data generated by RPF(). Since the fault does not 
erase any data, the process is reversible [30] and 
therefore, or K(RF) – K(F) = 0. The equivalence in 
complexity RF and F follows from the fact that 
because there is no loss or gain of complexity when 
the system is restored to its prior state using the anti-
fault process RPF, there is no work performed. The 

algorithmically reversed fault will be referred to as 
an anti-fault in this paper.

Consider reversing AVNMP processes in more 
detail. Details of AVNMP operation are described in 
[16] however, a brief description is provided here 
using a Case Diagram. The Case Diagram shown in 
Figure 105 describes the AVNMP Management 
Information Base (MIB). Arrows indicate informa-
tion flow; labeled short lines indicate counters, and 
labeled arrows represent information flow that is 
counted. Active packets arrive through the active 
channel to the AVNMP Logical Process. The total 
number of packets entering the Receive Queue is 
maintained in logicalProcessQRSize. In addition, the 
Local Virtual Time is sampled via logicalProcessLVT. 
Next the State Queue, which holds past, present, 
and predicted state values, is updated. Any rollbacks 
that may occur are counted. Next the Send Queue 
transmits any output messages generated by the 
AVNMP Logical Process. The logicalProcessAntiMes-
sages counter counts anti-messages separately. 

Now consider the effect of reversible code using 
the SNMP Case diagram previously discussed in 
Figure 105. First, it is important to distinguish 
between the Physical and Logical Process. The Physi-
cal Process is the model of the actual system injected 
into AVNMP. This is in contrast to the Logical Pro-
cess, which is the entire AVNMP supporting imple-
mentation that includes the Physical Process as well 
as possible state saving, rollback, and anti-message 
capabilities. Note that it is the Physical Process, that 
is, the object being modeled that must be reversed, 
not the AVNMP Logical Process described in 
Figure 105. Case Diagrams shown in Figure 106 and 
Figure 107 represent the Physical Process. A process 
operating in reverse would be required to effectively 

Figure 105.  AVNMP SNMP Case Diagram. 
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5.3 Distributed denial of service example

reverse all ar row directions resulting in an effective 
decrement of counters. This is the purpose of roll-
back and anti-messages. By chasing the original mes-
sage, the anti-message may cause additional 
rollbacks to occur which, in a state saving system, 
causes previous state values to be restored to a 
known valid state. When implemented using revers-
ible code, the anti-message actively undoes the effect 
of the original message(s). The original messages to 
be rolled back are input to a reverse code version of 
the physical process in reverse order of their Receive 
Times. Instead of reversing a process that persis-
tently resides on a node, one could imagine revers-
ible active packets. The next section discusses a 
specific application of anti-faults, pointing out 
potential disadvantages with such a technique. 

5.3 DISTRIBUTED DENIAL OF SERVICE 
EXAMPLE

In the previous section, it was suggested that gen-
eral-purpose fault correction might be automated by 
reversing the algorithmic fault description. This sec-
tion considers the effect of such a mechanism rela-
tive to a particular fault, namely a Distributed Denial 
of Service (DDoS) attack. We will see that simple 
fault reversal may not always be the best solution, 
particularly when irrevocable events have occurred, 
such as the theft of resources. Consider a Distributed 
Denial of Service (DDoS) attack as a fault. Kolmog-
orov Complexity has been used to detect likely 
DDoS attacks in [154]. Note the assumption that this 
is an Active Network, thus, the DDoS attack can con-
sume both bandwidth and processing. Referring 
back to Figure 104 one can see that AVNMP continu-
ously updates predictions on anticipated load 
throughout the system based upon legitimate net-
work use. In the situation illustrated in Figure 106, a 
simplified snapshot of packet forwarding is illus-
trated in which packets entering network interfaces 
x, y and z are forwarded outward through interfaces 
a, b, c. The Case Diagrams in Figure 106 and 
Figure 107 represent a more detailed model of infor-
mation flow. Remember that these flows describe 
the Physical Process as mentioned in the previous 
section. As protocol data units move through the 
network interfaces, the Simple Network Manage-
ment Protocol (SNMP) counters shown in 
Figure 108 will maintain current state in separate 

MIB table rows for each interface.
A hypothetical set of traffic load graphs is shown 

in Figure 109. A simple algorithmic form of the load 
might be as shown in the figure at time t, namely 
a = x + 2y + 10z where x, y, and z are output inter-

Figure 106.  Case diagram for IP. 

Figure 107.  Statistics maintained for each interface. 

Figure 108.  Traffic through interfaces. 
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faces and the numbers indicate load, in number of 
packets, on those interfaces. The fault data (F) is the 
difference between the load in the AVNMP and 
Actual graphs. The algorithmic description of the 
fault (PF()) is the code that forwards nine packets 
from interface x to interface a. The reverse code 
(RPF()) would transmit 9 packets from a back to x, 
essentially reflecting the attack back towards the 
source as illustrated in Figure 110. The authors rec-

ognize that simply reflecting packets would increase 
network load, effectively increasing the impact of an 
attack. This is a disadvantage of blindly using anti-
faults. In this case, it is disadvantageous to blindly 
use anti-faults because the fault process performed 
the irreversible actions of using up bandwidth as 
well as processing units. The best option in this case 
might have been to simply attempt to quench attack 
packets while moving closer towards the source of 
the attack. This would bring the actual system closer 
to the expected operation provided by the AVNMP 
model, namely H → He. 

The goal of the anti-fault was to place the system 
back to a healthy state that existed before the fault 
occurred. The naïve anti-fault described above, 
while relatively easy to implement, attempted to do 
this by reversing events, some of which were irrevers-
ible. For example, once a resource, such as band-
width or CPU has been stolen at a particular 
instance of time, it cannot be returned. Additionally, 
the attempt to transition the System State backward 
in time to a healthy condition temporarily increased 
the impact of the fault. Research required to achieve 
the effective reversal of faults in a more controlled 
manner using complexity is outlined next. A Swarm 
simulation of system complexity is used to study the 
relation to Kolmogorov Complexity.

5.4 TOWARDS COMPLEXITY-BASED 
SOLUTION COMPOSITION

This section discusses a general approach for self-
composing solutions using lessons learned from the 
previous section. The approach can be described as 
the automated generation of a solution hypothesis 
Hs = R(He – Hf), i.e., the reverse of the algorithmic 
difference between the faulty and correct algorith-
mic representation of behavior by controlled means. 
As H deviates from, heat [28],[29] or complexity as 
presented here, is generated. In [28] and [29] the 
relationship between fault and energy is explored 
and simulated (see [18] and [21] for recent work on 
complexity and energy and Information Assurance). 
It is useful to briefly describe [28] in order to pro-
vide a tangible background and explanation for the 
algorithmic fault detection approach. The motiva-
tion for that experiment came from the relationship 
between Kolmogorov Complexity and entropy. The 
definition and application of Kolmogorov Complex-
ity to vulnerability analysis (discussed in [21]) identi-
fied how Kolmogorov Complexity can be used to 
determine vulnerabilities in a system as areas of low 
complexity. An underlying hypothesis of our work is 
that computation and communication are funda-
mentally related and conversely bandwidth and pro-
cessing denial of service are fundamentally 
interrelated. Low complexity data or code consum-
ing large amounts of bandwidth or processing indi-
cates the likelihood of an attack. A model of 
complexity evolution within a closed system is 
described in reference [18]. That reference devel-
oped an abstract model with which to study com-
plexity, specifically Kolmogorov Complexity, of 
information within an information system. That 

Figure 109.  Predicted versus actual load. 

Figure 110.  Reflecting the attack via code reversal. 

83



model explores K(x), a measurement of length in 
bytes, and K(x)/s, a measure of the maximum 
increase in complexity of the system due to code 
entering a system such as code carried by active 
packets. The rate of complexity increase in terms of 
algorithmic active packet complexity in units of 
within the closed system was measured. Significant 
changes in system complexity indicate the presence 
of faults. Reference [154] reported the results of 
Kolmogorov Complexity probes that detect Distrib-
uted Denial of Service attacks. 

Complexity estimation mechanisms for these 
experiments have been developed in Mathematica 
using a package developed specifically for the study 
of complexity, particularly within active networks. 
This package contains several functions for the esti-
mation of complexity, shown in Figure 110, includ-
ing a finite automata minimization technique and 
an entropy-based compression technique. The pack-
age also contains a framework for simulating trans-
mission of data in user controlled combinations of 
algorithmic and passive forms within active packets. 
After testing in Mathematica, the implementation 
has been integrated into an active network [16] as 
Java code that can be easily inserted into Magician 
[31] active packets. The complexity probe returns 
an estimate of the smallest compressed size of a 
string. It is based upon computing the entropy of 
the weight of ones in a string. Specifically it is 
defined in Equation 15A where x#1 is the number of 
1 bits and x#0 is the number of 0 bits in the string 
whose complexity is to be determined. Entropy is 
defined in Equation 15B. The expected complexity 
is asymptotically related to entropy as shown in 

Equation 15C. See [153] for more advanced mea-
sures of empirical entropy and their relationship to 
Kolmogorov Complexity. The expected complexity 
is asymptotically related to entropy as shown in 
Equation 15C. 

(15)
In references [18] and [28], a Swarm simulation 

containing agents representing data points from a 
system, specifically, Simple Network Management 
Protocol (SNMP) Management Information Base 
(MIB) object values from a communication network 
were programmed to initially move in a randomized 
manner. Thus, the agents began with high location 
entropy and no detectable pattern formation 
resulted initially. This mechanism was used to maxi-
mize the ignorance of the prior probability, which is 
also the purpose of the universal probability, M() 
[27]. The location distribution of Swarm agents, x, 
represented the health of the system. The predictive 
capability can be viewed as the ability, given x, to pre-
dict the type and severity of a fault condition pat-
tern, y. The goal is to predict M(y|x). From Bayes 
Theorem [30] the problem can be stated as shown 

Figure 111.  Selected mathematica complexity functions. 
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 5. Fault Identification and Extraction

in. Figure 112 shows the relationship among 

AVNMP hypothesis deviation, entropy, and complex-
ity in the feedback mechanism designed to maintain 
system health.

Faults, representing MIB object values that oper-
ated outside of a preset threshold generated heat 
proportional to the amount by which they exceed 
the threshold, |He – H|. The agents were attracted 
towards the location of heat. An accurate heat prop-
agation model was used in the simulation to model 
heat dissipation within a finite two-dimensional grid 
upon which the agents resided. With the generation 
of heat, the agents moved in a consistent direction 
towards the heat, and then clustered together in a 
circular pattern around the heat resulting in a loss 
of entropy. In a sense, the introduction of entropy 
via heat energy caused a reduction in entropy of 
agent location. Equation (17) and Equation (18) 
indicate the most accurate prediction for fault pat-
tern location distribution y is one that minimizes the 
difference in length between the program that gen-
erates x and the program that generates xy. Clearly, 
in the perfect operation scenario, movement was 
programmed by default to be as randomly generated 
as possible. The program size required to define the 
location of each agent was on the order of the size of 

the entire grid. As heat was increased, cluster pat-
terns increased in number and size, causing the 
location distribution to be describable by smaller 
formulae, thus lower complexity. The cluster pat-
terns were hypothesized to represented the type of 
fault while the complexity, or size of the algorithmic 
description of the cluster patterns, estimated the 
severity of the fault. 

Equation (17)

Equation (18)
The Swarm complexity model is only as good as 

its ability to reflect complexity changes in an actual 
system. An actual system contains many subtle corre-
lations that may be impossible to fully specify in 
detail. However, let us begin with a controlled exper-
iment involving a DDoS attack. Swarm agent loca-
tion over time represents complexity in this 
experiment. Swarm heat is a control mechanism that 
effectively introduces correlation and reduces com-
plexity. The goal is to model information flows in 
which Swarm agents represent blocks of time aver-
aged active packets in the DDoS differential com-
plexity window described in [154]. Heat represents 
potential correlation that indicates potential DDoS 
attack. We begin by calibrating Swarm heat parame-
ters to match known Magician DDoS complexity esti-
mations. The attacker varies the correlation within 
the Magician attack stream. The Swarm model is cor-
respondingly varied and the results compared and 
contrasted with the actual Magician system.

5.5 SUMMARY
A Kolmogorov Complexity estimate is used to drive 
the optimal generation and composition of solu-
tions. System faults are represented in an algorith-
mic form. Reversible code is then developed to 
remove the effect of faults in a system. The applica-
tion in this paper focuses on an active network in 
which information, algorithmic and static, can be 
transmitted in a fine-grained manner.

Figure 112.  Hypotheses, complexity, and entropy in anti-fault 
generation. 
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6. Information Assurance
6.1 ANALYSIS OF THE EVOLUTION OF 

COMPLEXITY
A defender would like to know not only the average 
complexity of the system, but also the change in 
complexity over time. The goal of this section is to 
attempt to address the macroscopic behavior, or evo-
lution, of complexity in order to understand how 
complexity relates to vulnerability and the ever-
increasing cycle of attacker/defender complexity as 
each improves their capabilities. Even if complexity 
can be measured at various locations within an infor-
mation system as discussed later in this report, the 
system may evolve. It is critical to know if bounds on 
complexity evolution exist so that complexity 
“probe” locations can be optimized. Understanding 
the evolution of complexity can also lead to optimal 
sampling of the probes so that they are not over-sam-
pled, causing wasted network resources.

Using Definition 6.4, the evolution in complexity 
can be crudely characterized by placing initial esti-
mated values into Definition 6.4 and recursively 
computing the complexity of the output y = p(x). 
The output, y, is a data bit-stream and can sometimes 
be an executable program, p(). The resulting evolu-
tion is a series of the form {y}, where. The character-
ization of this series depends upon the initial values 
in Definition 6.4, namely L(P), K(x), c, and the mag-
nitude of the inequality from which K(y) is derived.

In order to provide convenient measurements for 
comparison with the macroscopic results discussed 
later in this report, the metrics are defined in a man-
ner independent of factors influenced by the opera-
tion of the system itself. These include such 
parameters as wallclock time, number of program or 
data bit-strings, or initial location, rate, and direc-
tion of movement of entities within the system. The 
metrics analytically derived from Definition 6.4 
include, E[K(y)], E[L(y)] where K is the estimated 
Kolmogorov complexity and E[] is the expected 
value. The number of cycles, or evolutions, of Defini-
tion 6.4 is used to control the termination of the 
analysis. In the emulation described later in this 
report, a program can terminate early or continue 
executing forever; both are the results of input not 
being what is subjectively called a valid program. 
This analysis assumes that neither event happens. 
Both events result in fewer bit-strings in the actual 

system than in the analysis. The manner in which 
these events are handled in the actual emulation is 
discussed in more detail later in the report.

The analytical results obtained are shown in 
Figure 113 using Definition 6.4 where the constant 

and inequality are determined from a compression-
based estimate of a single specific program, input, 
and output complexity measurement. The more 
inefficient the program, where program efficiency is 

, the more rapidly the complexity can evolve 

per program execution. The specific program whose 
complexity estimates are used in Figure 113 are 
from the program used in the emulation described 
later in this report.

Given the means to monitor estimates of com-
plexity within an actual, highly dynamic, and evolv-
ing information system, trends that support the 
theoretical bounds on complexity should be observ-
able. The next section attempts to construct such a 
system by obtaining measurements of bit-string 
lengths, complexity, and Turing Machine program 
transitions executed in a highly dynamic environ-
ment in which programs, data, and machines come 
together sharing information in a large-scale system. 

Emulation of complexity evolution
The effort to implement a model of the evolution of 
complexity is called emulation rather than simula-
tion because the computation and complexity under 
analysis are part of the model itself. The primary 
goal of this emulation is to examine trends in the 

Figure 113.  Definition 6.4 with Estimated Complexities for the 
Data and Program. 
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evolution of complexity in a highly complex inter -
connection of information systems. In particular, an 
initial set of carefully controlled environmental 
parameters should include initial program and data 
complexities and lengths as well as the rate of 
exchange and transport of information. Given an 
initial set of programs and data bit-strings let loose 
to execute in a closed environment, how does the 
complexity evolve? At what rate does complexity 
increase and why? What affects its rate of increase 
and why? What would cause it to decrease, at what 
rate, and why? What is the relationship between the 
microscopic level, that is, a single program execu-
tion, and the macroscopic level? What is the rela-
tionship between the complexity of a program and 
the complexity of the output it generates? Does the 
microscopic change in complexity hold at the mac-
roscopic level and can more detail be deduced about 
the bound on complexity that it describes? What is 
the relationship of program execution, that is, Tur-
ing Machine state transitions, to output complexity? 
How do controls on information exchange affect the 
evolution of complexity? How does a set of pro-
grams, some that increase complexity and some that 
decrease complexity, affect the evolution of the total 
system complexity? This work attempts to lay the 
groundwork for answering these questions by com-
paring and contrasting the microscopic and macro-
scopic levels of complexity.

The system used for experimental study of com-
plexity should mirror a large-scale, highly dynamic, 
yet easily controlled environment that is representa-
tive of actual information exchange and evolution in 
a variety of real world information systems. The 
approach taken in this effort to understand the evo-
lution of complexity is illustrated in Figure 114. A 
Swarm (http://www.swarm.org) model has been 
developed that provides an open framework for 
experimentation on Complexity Theory and its rela-
tionship to information assurance. The Swarm emu-
lation has been programmed with three types of 
entities: Turing Machines, programs, and data bit-
strings. Multiple entities of each type exist and are 
represented in Figure 114. The program is repre-
sented by a set of states connected by transitions, the 
bit-string data by binary digits within a rectangular 
array, and the computer chip represents the Turing 
Machine. Each entity is placed in a random location 
within a field of attractive force, causing data bit-
strings to be attracted towards programs and pro-
grams towards Turing Machines. The system can be 

viewed as a two-dimensional grid shown in 
Figure 115 with a possibility of four types of objects 

residing on any grid location, as shown in Table 9. 
Note that all interactions and control decisions are 

made by the local entities; there is no global control. 

Table 9 Entities and Their Representation in the 
Emulation

Entity Representation

Turing Machine Yellow—only when active

Tape Green—lighter shading when 
more complex

Turing Machine 
Program

Green—lighter shading when 
more complex

Heat Red—Darker when hotter

Figure 114.  Emulation Components and High Level Dynamics. 
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Figure 115.  CyberSwarm Simulation at 100 and 300 Time Units. 
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 6. Information Assurance

The motivating factor for each of the entities is heat. 
Each entity generates a small amount of heat that is 
determined probabilistically within a range specified 
as a startup parameter. Heat can represent the initial 
flow of information that causes one entity to become 
interested in working with another and form groups 
that are not too small or too large. Using energy to 
represent information is discussed further in [24]. 
The mechanism that implements this clustering 
behavior is the fact that entities are endowed with a 
desire to maintain an ideal temperature and will 
cluster together via a randomized movement pattern 
in a direction seeking to maintain their ideal tem-
perature. Heat diffuses through the system in a real-
istic manner. The brightness indicates the estimated 
complexity of an entity – dark green indicates a low 
complexity, brighter green indicates a higher com-
plexity. In order to provide a preview of how this 
emulation is designed, Figure 115 shows the emula-
tion at times 100 and 300 units respectively. These 
figures should be viewed in color in order to see the 
full interpretation. If a Turing Machine, program, 
and data input tape meet, the program is executed 
and the program output tape generated by program 
execution is added to the system – available for use 
as data input in further computations. Figure 115 
highlights two clusters: the circled cluster on the left 
is dark because the bit-strings have low and no Tur-
ing Machine to enable computation while the right 
cluster is brighter because it contains more compu-
tational activity and growing per bit-string. The clus-
ters are attracted to one another and eventually 
form a single larger, brighter cluster.

There are two levels of abstraction occurring 
simultaneously in this system. The first level is indi-
vidual goal-directed behavior and information 
exchange; the second is computation. In the first 
level of the abstraction, heat is a representation of 
motivation for movement towards common areas. 
The entities are initially located randomly through-
out the two-dimensional space and gradually cluster 
together seeking to reach an ideal temperate. There 
is complexity in the location and movement of the 
entities. Movement towards common areas allows 
information exchange to occur. At this level of 
abstraction, concepts such as access control in the 
exchange of information can be explored; however, 
that is outside the scope of this report. The second 
level of abstraction is focused on computation. That 
is the primary focus of this report. The first level of 

abstraction provides the highly dynamic system in 
which the second level, computation, takes place.

The Turing machine
The Turing Machine entity enables a program con-
sisting of sets of states and transitions to operate. 
The Turing Machine is one of the most fundamental 
general computing abstractions and is well-known in 
computer science, having a rich theory of its own 
that this report intends to utilize to its advantage. 
The Turing Machine consists of a seven-tuple (Q, T, 
I, δ, b, q0, qf). Q is a set of states, T is a set of tape sym-
bols, I is a set of input symbols, b is a blank, q0 is the 
initial state, qf is the final state. δ is the next move 
function. δ maps a subset of Q × Tk to Q × (T × {L, R, 
S})k. L, R, and S indicate movement of the tape to 
the left, right, or stationary respectively. There can 
be multiple tapes. Given a current state and tape 
symbol, δ specifies the next state, the new symbol to 
be written on the tape, and the direction to move 
the tape. The sets of symbols that lead to an accept-
ing state (qf) is the input language (∑). The Turing 
Machine object, when loaded with a valid program, 
can execute the program when provided with an 
input tape. A program resides on a tape; the only dif-
ference between a program and a tape is that a pro-
gram is a set of instructions that the Turing Machine 
can interpret as a program. If the program fails, that 
is, it is not a syntactically valid program, the Turing 
Machine will eject it. If the time taken by program 
execution on a Turing Machine exceeds a specified 
time limit, the program is forcibly terminated. The 
Turing Machine entity enables the execution of pro-
grams described in the next subsection. The Turing 
Machine entity’s complexity is not included in any of 
the complexity related measurements.

The program
Valid syntax in the program implementation consists 
of a set of states, Q, where each state, q, is defined as 
a set of tuples: {…(value-to-write, tape-direction, 
next-state)…} such that there is one tuple per alpha-
bet symbol. The alphabet, I, in this emulation is 
assumed to be a set of integers starting from zero. I 
maps onto q such that an input value read from the 
tape points to the correct (value-to-write, tape-direc-
tion, next-state) tuple within state q. Note that the 
value-to-write is written before the tape is moved. 
The tape-direction (L, R, and S) is represented as (0, 
1, and 2). A next-state of negative one (–1) indicates 
a valid end of program and is included in length and 
complexity measures of the program. The initial 
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program has an estimated complexity of 0.7917 and 
length of 24 bytes.

The input and output tapes for the turing 
machine
The implementation of the tape, T, is simply a string 
of numbers. An example input tape looks like: 
(…1,2,3…). The tape is bi-directionally infinite; 
movement can occur infinitely to the left or the 
right. Zero (0) is returned when blank spaces are 
read from the tape. The length and complexity of a 
tape includes only the values which were initially on 
the tape or written to the tape during a program 
execution and not the infinity of zeroes in either 
direction. In order to prevent explosive growth in 
the amount of data generated during an execution 
of the emulation, program and data tapes are imple-
mented as circular queues. Once a specified tape 
length is reached, the oldest data is overwritten. The 
initial input data has an estimated complexity of 1.0 
and the estimated output data complexity is 0.8571. 
The initial input length is 5 bytes and output has a 
length of 7 bytes.

The attractive force
Heat is the attractive force that pulls the three main 
object types together. The objects generate heat and 
attempt to maintain an ideal temperature by group-
ing together. They can also be repelled if the tem-
perature is above the ideal temperature. An accurate 
model of heat diffusion on the two dimensional grid 
is included as part of the simulation. Heat genera-
tion, evaporation rate, and the diffusion constant 
within the two-dimensional grid are specified in 
Table 10. A discrete approximation to diffusion is 
used from Definition 7.1 where nbdavg is the 
weighted-average of the eight adjacent neighbors. 
Heat is initially set uniformly for each bug from the 
range specified in Table 10. The motivation for an 
entity to move is determined by its unhappiness as 
defined in Definition 7.2.

This report presents results relating to the search 
for a fundamental understanding of information 
assurance. The results from this research enable a 
deeper understanding that leads towards quantifica-
tion of vulnerabilities, measurement, control, and 
composition of information security safeguards, as 
well as new types of safeguards. The main result of 
this work is a unified view that enables information 
assurance to be engineered as an integrated feature 
of an information system. Results from this work are 
integrated with an existing tool, called NIPAT, which 

displays a measure of the security of a system 
through an electrical engineering paradigm (Sec-
tion 3). Other attempts have been made to repre-
sent information assurance in similar grid formats. 
NIPAT is used as a representation of generic grid-
based techniques so that the strengths and weak-
nesses of such approaches can be determined.

Figure 116 illustrates the approach taken in this 

research towards building a foundation for engi-
neering information assurance. This work began by 
developing a computational model upon which to 
test and build information assurance concepts. In 
the next layer of the information assurance frame-
work a feasible metric was developed through inter-
action with the information assurance model. In 
conjunction with the information assurance model 
and metric space developed through the induced 
topological framework, insights gained through 

Table 10 Emulation Control Variables

Emulation Variable Value

Initial length of data and program 
strings in bytes

(5, 24)

Initial spatial distribution of strings 
and programs and turing Machines

Random

Proportion of strings, programs, and 
Turing Machines

(0.3, 0.3, 0.4)

Functional activity of programs Shuffle Input Data

Heat evaporation rate and diffusion 
constant

(0.99, 1.0)

Heat generation of entities chosen 
uniformly from the range

3,000–10,000

Ideal temperature chosen uni-
formly from the range

17,000–31,000

Emulation run time in simulation 
time units

400

Figure 116.  Architectural layers for information assurance. 

89



 6. Information Assurance

viewing infor mation as a physical phenomenon were 
developed. Electrical engineering and brittle sys-
tems analysis are specific examples, tangible to users, 
of these physical insights. While Figure 116 appears 
as a simple construction with each layer building 
upon the one beneath it, in reality the research has 
been an iterative process where one layer is used to 
help support or validate another layer. As a specific 
example, the Turing Machine may be viewed as a 
specific computational model, Kolmogorov Com-
plexity as inducing a metric space, and Brittle Sys-
tems, derived from materials science, as an analysis 
of fundamental tradeoffs in the information assur-
ance performance of a system. Physics of informa-
tion has contributed towards understanding the 
conservation of complexity by providing the insight 
to look for conserved properties related to informa-
tion assurance. Complexity-based vulnerability analy-
sis (Section 9), sits at the level of the induced 
topological framework. Complexity-based vulnera-
bility analysis plots the complexity measure of a sys-
tem. Using this information, the conservation 
principle from physics of information, brittle sys-
tems analysis, or electrical engineering principles 
may be applied in order to engineer the desired 
properties into the information system. Learning 
from the strengths and weaknesses of the above 
approaches, this research has driven deeper into the 
nature of information assurance through a series of 
original hypotheses and theorems. The complexity-
based approach derived through this series of 
hypotheses and theorems provides a general unified 
theory for understanding the fundamentals of infor-
mation assurance. The results from our complexity-
based approach can be used synergistically with 
other approaches.

This report begins with a brief overview of rele-
vant research that has attempted to understand the 
properties of information in terms of well-defined 
scientific and engineering disciplines. Next, the 
desirable properties of a metric for security are 
examined (Section 3.3). In order to further the 
development of a realistic metric, a general model 
for studying information assurance is proposed (Sec-
tion 4). Next, a definition of vulnerability is pro-
posed in terms of the new model based on Turing 
Machines (Hypothesis 4.1), and engineered proper-
ties of information assurance with an analogy to 
mechanical engineering are proposed in terms of 
the new model. The analogy with mechanical engi-
neering is called Brittle Systems (Section 5) and 

involves the design of information assurance in a 
manner that accounts for tradeoffs in performance 
and degradation of information assurance in a sys-
tem. Information assurance is also viewed from the 
perspective of set theory and a topological space 
(Section 3.5). This is particularly relevant in under-
standing the operation of the metric in terms of 
secure composition and the limits of applying safe-
guards to a system.

Continuing the outline of the rest of the report, a 
key contribution of this effort, the development of a 
particular information metric, is presented. Before 
this point, the report has examined in detail only 
the properties of a metric, not an actual metric. The 
metric proposed is Kolmogorov Complexity 
(Section 6). The advantages and drawbacks of this 
metric are discussed, including its incomputable 
nature. However, computable estimates (Section 
6.2) of Kolmogorov Complexity are proposed next, 
as well as additional useful applications of Kolmog-
orov Complexity for communications in general. 
These additional applications are important because 
they demonstrate how information assurance should 
be an integral part of information system design. 
Next Theorems 6.1 and 6.2 concerning the conser-
vation of complexity (Section 6.7) within an infor-
mation system are discussed. This leads to a Swarm 
experiment that monitors the evolution of complex-
ity in a dynamic and complex system and examines 
our ability to monitor the complexity as it evolves. 
Unless vulnerabilities can be identified and mea-
sured, the information assurance of a system can 
never be properly designed or guaranteed. Results 
from a study on complexity evolving within an infor-
mation system using Mathematica (Section 9.2), 
Swarm, and a new Java complexity probe toolkit 
(Section 9.4), developed by this project, are pre-
sented in this report. An underlying definition of 
information security is hypothesized (Hypothesis 
9.1) based upon the attacker and defender as rea-
soning entities, capable of learning to outwit one 
another. This leads to a study of the evolution of 
complexity in an information system and the effects 
of the environment upon the evolution of complex-
ity. Understanding the evolution of complexity in a 
system enables a better understanding of how to 
measure and quantify the vulnerability of a system. 
Finally, the design of the Java complexity probes 
toolkit under construction for automated measure-
ment of information assurance is presented (Section 
9.5). Appendix A presents a dialog in which typical 
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questions about the relationship between complex-
ity and information assurance are posed and 
answered. This dialog is best read after reading the 
introduction Kolmogorov Complexity (Section 6.1) 
or for someone already familiar with complexity the-
ory who wants a quick overview of the approach 
taken on this project toward the relationship 
between complexity and information assurance. 
Appendix B presents the design for an experiment 
that could be run to validate the complexity-based 
vulnerability analysis concept (Section 9). Appendix 
C provides more detail on the design and operation 
of the NIPAT security tool.

6.2 EXPERIMENTAL RESULTS FROM THE 
EVOLUTION OF COMPLEXITY

This section presents the results obtained from the 
emulation and their relation regarding the theoreti-
cal definition of complexity discussed earlier in this 
report as well as their relation to vulnerability analy-
sis and complexity measurement in general. In this 
emulation, the three types of computationally 
related entities (data, programs, and Turing 
Machines) are initially distributed in random loca-
tions within the two-dimensional grid-space. Each 
entity generates a fixed amount of heat during the 
emulation run. Each entity also has an internal vari-
able termed its “unhappiness” which is a normalized 
distance of the entity is from its desired tempera-
ture. An entity cooler than its ideal temperature will 
move one grid-space per time unit in the direction 
of warmth. As entities congregate, heat increases 
forming red hazy hot spots on the grid.

Begin with a single entity that contains a Turing 
Machine, program, and data. This single entity will 
evolve by executing its program upon its current 
data at each time step. In Figure 117 the number of 
program transitions is compared and contrasted to 
the data bit-string length. Note that all bit-strings are 
contained in circular queues of size 100 bytes. Once 
the queue is filled, the oldest data is overwritten with 
newly generated data. Thus, there is a bound on the 
maximum space available. There are several reasons 
for using the circular queues. The first is a practical 
reason; unlimited growth quickly slows the real-time 
execution of the emulation. Also, in reality, one gen-
erally does not feed all available data into a program 
if it is not necessary for exactly the reason men-
tioned. Finally, the cumulative effects of new data 
complexity will more quickly become apparent if the 
older data is eventually discarded.

In Figure 118, the resulting complexity is plotted 

for each evolution, that is, for each program execu-
tion. Note that this complexity measure includes the 
program complexity itself. However, as the program 
does not change for the results presented in this 
report, the decrease in complexity is due to the data. 
It should be noted that the program executed shuf-
fles the input data to generate the output data. 
Clearly, the complexity reaches a minimum constant 
value in Figure 118.

In order to begin to study the relation of position 
with complexity, a metric called envelopment has been 
defined as the complement of the inverse of the 
number of directly adjacent neighbors of an entity as 
shown in Definition 8.1. The value plotted in the fol-
lowing graphs is the expected value for all entities in 
the system. High values of envelopment cause a reduc-
tion in the location complexity. Clustering produces 

Figure 117.  Single Entity Transitions and Length. 

InfoAssurance[1].pdf Figure 8.1

Figure 118.  Single Entity Change in Complexity. 
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 6. Information Assurance

more heat, thus raising the “happiness” of the enti-
ties within the cluster as can be seen in Figure 119.

Envelopment or clustering raises the possibility 
that programs, data, and Turing Machines will meet. 
When any two different entities meet, the contents 
of both are copied to each entity. Note that a com-
plete representation of the system would have to 
include the movement and exchange of data. This is 
purposely not included in our results; instead, a sam-
ple of sub-component complexities is examined. It 
would be rare, especially in today’s communication 
networks for example, to have complete access to all 
relationships. Typically only the data points pre-
sented by an SNMP MIB, for example, are available. 
When an entity contains program, data, and Turing 
Machine, it executes the program generating new 
data. Figure 120 shows the number of data and pro-
gram exchanges (labeled Data Cp, Prog Cp in 
Figure 120) with program execution enabled 
(labeled w Ex in Figure 120) and without program 
execution. Program execution lags data and pro-
gram exchange by a small amount, because program 
execution cannot proceed until all three entities 
meet. Also, when program execution is enabled 
many more exchanges take place. This is because 
program execution creates new data to be 
exchanged. When execution is enabled, the amount 

of data in the system rises rapidly. All data previously 
gathered by an entity, bounded by the size of the cir-
cular queue, is fed into a Turing Machine when pro-
gram execution occurs. Each Turing Machine is 
equipped with a timeout mechanism so that the pro-
gram will forcibly end in case of endless loops, or 
simply too much data. The number of forced-time-
outs is shown in Figure 121. Any data generated 

before the timeout is considered valid output. There 
were no program exceptions in this case.

Figure 119.  Envelopment and Happiness. 

InfoAssurance[1].pdf Figure 8.3

Figure 120.  Data Exchanges and Generation with and without 
Program Execution. 

InfoAssurance[1].pdf Figure 8.4

Figure 121.  Program Timeouts. 
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6.2 Experimental Results from the Evolution of Complexity

In Figure 122, the state transition per bit-string 

length shows the total number of Turing Machine 
State transitions per length of bit-strings. Initially, 
the system has no program execution, only informa-
tion exchange. It is possible for a zero, which indi-
cates end of tape, to be shuffled into the middle of 
an output tape. Only the result up to the zero is 
regarded as output; the remainder of the program 
transitions may be considered subjectively as wasted 
effort. Thus, the Turing Machine programs can exe-
cute state transitions without generating the equiva-
lent amount of output. 

Now consider the focus of this work, complexity. 
The complexity estimation used in this analysis is the 
compression-based estimate of complexity described 
earlier. In this emulation, the three main types of 
entities are tagged and certain rules are enforced. 
Thus, for example, data cannot execute a program 
and a program cannot attempt to execute a Turing 
Machine. Given this case, the authors hypothesize 
that a given bound on the complexity will eventually 
be reached in the system. In Figure 123, the esti-
mated complexity of the system grows faster when 
program execution is enabled as contrasted with 
entity exchange only. This is a key result. In a closed 
environment with a fixed number of programs and 
data, the only way for the complexity of an entity to 
change is through exchange of information. No new 
information is created except through copying 
information from one entity to another. When the 
Turing Machines are enabled in each entity, they 
shuffle the input data, creating new data that is then 
available to be exchanged with other entities.

Compare and contrast the total bit-string length 
with the total bit-string complexity throughout the 

emulation shown in Figure 124 with program execu-

tion. Notice that the total system bit-string length 
increases at a much greater rate than the complexity. 
This occurs because the initial activity is data and 
program exchange as entities meet within the system 
and data spreads through sharing. As information 
sharing decreases because each entity already has a 
copy of the information, the primary activity 
becomes data generation through program execu-
tion.

In Figure 125, the complexity per length of data 
is plotted. Notice that with program execution 
enabled the complexity per length of data increases. 
In the case of operation without program execution, 
only a finite length of data exists. When the total 
estimated complexity of the data within each entity 
is plotted over time, the system with program execu-

Figure 122.  Turing Machine Transitions and Bit-String Length. 

InfoAssurance[1].pdf Figure 8.6

Figure 123.  Total System Estimated Complexity. 

InfoAssurance[1].pdf Figure 8.7

Figure 124.  Bit-String Length. 
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 6. Information Assurance

tion shows a marked increase in estimated complex-
ity over the pure exchange system.

In Figure 126, the expected value of the complex-

ity of all bit-strings contained by an entity is plotted 
versus time. The larger curve shows the average 
complexity per entity when program execution is 
enabled. As expected, program execution with this 
particular program, one that shuffles data, increased 
the average system complexity. Note that the differ-
ence in complexity does not appear until approxi-
mately time 100. However, program execution 
events began slightly before time 100. A question 
important for systems that would make decisions 
based upon complexity concerns the delay between 
the time of the cause of complexity change and the 
time for a measurable increase in complexity to 
occur. This question is an interesting one that is out-
side the scope of this report.

This emulation validated several intuitive con-
cepts. The first involves complexity in a closed sys-
tem; that is, a system defined as a fixed number of 
entities in which no data, programs, or Turing 
Machines may enter from outside the system. A pro-
gram injected into the system that, on a microscopic 
scale increases complexity generated greater average 
macroscopic system complexity. The results of this 
study also help to validate our initial hypothesis: the 
greater the complexity, the more effort required to 
understand it. The emulation with program execu-
tion, showing a higher complexity, required many 
more probes in order to understand its behavior 
than the system with only program and data 
exchange enabled. This implies that an attacker, 
with no a priori knowledge of the system, would have 
a more difficult time understanding how to under-
stand and thwart the more complex system. This 
leads to the next section on complexity-based vul-
nerability analysis.

6.3 COMPLEXITY-BASED VULNERABILITY 
ANALYSIS

Automated Discovery of Vulnerabilities 
without a priori Knowledge of Vulnerability 
Types

Any vulnerability analysis technique for Information 
Assurance must account for the innovation of an 
attacker. Such a metric was suggested about 700 
years ago by William of Occam [27]. Occam’s Razor 
has been the basis of much of this report and the 
complexity-based vulnerability method to be pre-
sented. The salient point of Occam’s Razor and 
complexity-based vulnerability analysis is that the 
better one understands a phenomenon, the more 
concisely the phenomenon can be described. This is 
the essence of the goal of science: to develop theo-
ries that require a minimal amount of random infor-
mation. Ideally, all the knowledge required to 
describe a phenomenon should be algorithmically 
contained in formulae. Observe an input sequence 
at the bit-level and concatenate with an output 
sequence at the bit-level. This input/output concate-
nation is for either the entire system or for compo-
nents of the system. If there is low complexity in the 
input/output observations, then it is likely to be easy 
for an attacker to understand the system. Hypothesis 
9.1 explicitly states the means of measuring the com-

Figure 125.  Complexity per Length. 

InfoAssurance[1].pdf Figure 8.9

Figure 126.  Expected Complexity over Time. 

InfoAssurance[1].pdf Figure 8.10
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6.3 Complexity-Based Vulnerability Analysis

plexity of a system component, or protocol interac-
tion, to a potential attacker.

Mozart and vulnerability analysis
Science is art and art is science. One of the most 
mathematical of art forms is the composition of 
music. Music is compressed and transported over 
the Internet very frequently, and most listeners of 
such music probably have little interest in the com-
pression ratio of a particular piece of music. How-
ever, this piece of information can be very 
interesting and informative with regard to the com-
plexity of a piece of music. One would expect an 
incompressible piece of music to be highly complex, 
perhaps bordering on random noise, while a highly 
compressible piece of music would have a very sim-
ple repetitive nature. Most people would probably 
prefer music that falls in a mid-level of complexity; 
sounds that are not repetitious and boring yet not 
random and annoying, but follow an internal pat-
tern in the listeners’ minds. Music is a mathematical 
sequence that the composer is posing to the listener; 
the more easily the listener can extrapolate the 
sequence without being too challenging or too easy, 
the more pleasing the music sounds. Carrying the 
music analogy forward in a more explicit manner, 
consider the listener as an attacker and the com-
poser as the designer of an information system. If a 
user has a preference for a given type of music, a 
sample of that music can be included as a hypothesis 
in an MML-based complexity analysis. The lower the 
complexity the more appealing the music to that 
particular listener. The more easily the listener can 
extrapolate the musical sequence, the more vulnera-
ble the system.

Imagine the composer who wishes his music to be 
enjoyed by only a specific group of listeners and no 
others. The composer is constrained from generat-
ing a completely invulnerable system, that is, totally 
random, because the composer wants the music to 
be meaningful to at least some potential group of lis-
teners. Relating this analogy to the hydrostatic test 
that was mentioned in the introduction to this 
report, vulnerability is the quantification of the 
potential leakage of music that is enjoyable to unin-
tended listeners.

In a very quick experiment, the following three 
pieces of music were tested for complexity: 
Beethoven’s Sonata Op. 27, No. 2 (“Moonlight”), 
Mozart’s Sonata in A Major (“Alla Turka”), and 
Philip Glass’s Opening to “Glassworks.” The encod-

ing explicitly represents notes, timing, dynamics, 
and phrasing. Beethoven’s Moonlight Sonata has a 
complexity rating of 0.13, Mozart’s Sonata has a 
complexity rating of 0.16, and Glass’s Introduction 
to Glassworks has a complexity of 0.03. Philip Glass 
makes extreme use of repetitious arpeggios in his 
work, thus the low complexity rating. This author 
expected Beethoven to have a slightly higher com-
plexity than Mozart by a small amount, but it was the 
reverse in this case. Note that one could decompose 
the overall complexity to determine the complexity 
of a composer’s use of rhythm, note structure, phras-
ing, or other musical components. Once a com-
poser’s typical complexity band is benchmarked; this 
type of analysis could be used as an indicator to 
determine authenticity. Additionally, one could con-
jecture that “learning” to model Beethoven or 
Mozart might be more difficult than other compos-
ers.

Experimental validation of complexity-based 
vulnerability analysis
A model information system has been implemented 
in Mathematica to begin experimental validation of 
complexity-based vulnerability analysis. The goal is 
to determine the vulnerability, not only of the over-
all system, but also of system components. Vulnera-
bility analysis should be done without any a priori 
knowledge about system operation or knowledge of 
particular types of vulnerabilities. Expert systems 
and vulnerability analysis tools that rely upon rules 
identifying particular types of vulnerabilities are 
inherently brittle and, in fact, meaningless against 
an innovative attacker. Our Mathematica informa-
tion system model purposely does not include com-
ponent descriptions or explanations because the 
goal is for the system to be a black box with respect 
to vulnerability. The point is that a vulnerability anal-
ysis can be done without having to know the details 
of the system. At the end of this analysis the func-
tions of the analyzed components are mentioned. It 
should then make intuitive sense that a particular 
component performing a simple operation had a 
lower complexity than one performing a more “ran-
dom” operation.

Each component of an information system mod-
eled in Mathematica contains probe points through 
which bit level input and output can be collected. A 
complexity function based upon a simple inverse 
compression ratio is used as an estimate of complex-
ity. The intent is to experiment with better complex-
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ity measures as the project continues. 
Figure 127shows results from complexity measures 
taken of accumulated input and output of three sep-
arate components of the toy information system. 
The graphs show the complexity of bit-level input 
and output strings concatenated together. That is, 
observe an input sequence at the bit-level and con-
catenate with an output sequence at the bit-level. 
This input/output concatenation is for either the 
entire system or for components of the system. If 
there is a low complexity in the input/output obser-
vations, then it is likely to be easy for an attacker to 
understand the system, as in Hypothesis 9.1. Note 
that these graphs are showing estimates of Kolmog-
orov Complexity. If MML [37] were used, the 
attacker’s hypothesis would be used to determine 
the complexity relative to a particular attacker. In 
Figure 127 the X-axis is the number input and out-
put observations concatenated to form a single 
string of bits. The particular complexity estimate 
used in this example is very poor; however, an ongo-
ing area of research is to improve complexity esti-
mates. Because of the inaccurate complexity metric, 
all the figures show a rising complexity with the 
number of accumulated observations. However, 
notice the rate at which the complexity rises in each 
of the figures. From Table 11, it would appear that 
Component E is most vulnerable due to its low rate 
of increase in complexity while Component B 
appears to be the least vulnerable due to its steeper 
rise in complexity. These results make intuitive sense 
because Component E is simply transmitting data 
without any form of protection while Component B 
is adding noise to the data. This vulnerability 
method does not take into whether a component 
reduced or increased complexity; in other words 
whether the change was endothermic or exothermic 
complexity behavior.

These results show that vulnerabilities can be sys-
temically discovered. These vulnerabilities can be 
quantified to a value within the bounds of the com-
plexity measure error. When used in an MML [37] 

approach to complexity measurement, apparent 
complexity, that is, complexity as seen by a particular 
attacker can be determined. Thus, this work has led 
towards automatic generation of vulnerabilities with-
out requiring expert knowledge of each type of vul-
nerability and in a more complete manner, 
depending upon the number of components ana-
lyzed. Note that all possible combination of compo-
nents must be analyzed in this manner.

An information system should be designed in 
such a manner that the apparent complexity of the 
system under attack can be determined with respect 
to the attacker and that information used to maxi-
mize the distance in the apparent complexity 
between the attacker and defenders in an automati-
cally reconstituted system. An Active Network [16] is 
an ideal environment in which to experiment with 
an implementation of automated system reconstitu-
tion because it provides extreme flexibility in fine-
grain code movement and composition of code. 
Apparent Complexity is used to reconstitute the sys-
tem such that the complexity difference is maxi-
mized between legitimate users and attackers of the 
system. In this section, the discussion is limited to 
the automated hardening of a system based upon 
information about an attacker and a new form of 
vulnerability analysis.

Design of a complexity-based vulnerability 
analysis tool
A vulnerability analysis tool should quickly and effi-
ciently identify and display the vulnerability of an 
information system ranging from an application, to 
a node, network, or an interconnection of networks. 
The tool should be portable, easy to use, and have 
minimal impact upon a system. The tool should also 
be integrated with the management of the system or 
network. The approach taken has been to use the 
lessons learned from the emulation in this analysis 
to consider the design of a complexity-based vulner-
ability analysis system within the context of network 
management. The Swarm framework in the emula-
tion previously described queries potentially large 
numbers of entities much like SNMP polls data for 
system management. A salient difference is that in a 
Swarm model, simulation time can be controlled in 
order to make certain that all data is queried at pre-
cisely the requested simulation step interval. How-
ever, design and minimization of the number of data 
points to be collected, such that system operation 
can be described as fully as possible, is exactly the 

Table 11 Component Vulnerabilities

Component

C 19.6011

B 19.6302

E 19.0013

K x opstart:[ ]opend( )
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6.3 Complexity-Based Vulnerability Analysis

same in actual Management Information Base 
design for system and network management.

While integration with system management using 
a de facto standard such as SNMP is a future goal, a 
set of Java packages implementing lightweight 
“probes” that transparently gather data from a bit 
stream and report the result to the vulnerability 
analysis portion of the Java package has been devel-
oped. This design was chosen because the imple-
mented probes are extremely lightweight and also 
initiate the transfer of bit-level data, rather than wait-
ing to respond to a management query. Once a bet-
ter understanding of complexity is obtained, 
transition to implementation in SNMP will likely 
take place. The Swarm emulation ran with 200 such 
probes, one in each entity object and successfully 
reported the results to the analysis package. The 
authors intend to pursue the study of complexity 
within an active network environment [16], particu-
larly with regard to network reconstitution in the 
face of attack.

Future work to be addressed includes the best way 
to present data collected from hundreds of complex-
ity probes and how to incorporate that data into a 
useful integrated view, particularly in a network 
management context. Much more detailed analysis 
of the complexity emulation results is required as 
well as modifications to the basic emulation in order 
to understand the effects of access controls in the 
exchange of information, the role of complexity in 
automated service composition and fault tolerance, 
and how complexity can best be used for determin-
ing network attacks and fault conditions. 

Applying complexity to vulnerability analysis
Vulnerability analysis is defined as the process of 
quantifying the vulnerability of an information sys-
tem to attack. An attack is defined as the act of an 
unauthorized user extracting unauthorized informa-
tion from a system. As discussed previously, the infor-
mation system appears to the attacker as a natural 
physical entity to be researched; its behavior 
explored. Complexity, in the colloquial sense, 
should be high for the attacker and low for legiti-
mate users. Kolmogorov Complexity is an omni-
scient being’s measure of absolute complexity; by 
definition it measures the size of the smallest pro-
gram that can be generated. In a later section appar-
ent complexity is introduced as a potentially more 
feasible measure. However, the use of complexity for 
information assurance in general is discussed and 

the term complexity will refer to Kolmogorov Com-
plexity in this section. In the steps that follow, a sim-
ple, idealized approach is discussed. Many 
complicating details need to be addressed if this is to 
be literally applied, however, it provides a starting 
point for exposition of the concept.

The first step in computing complexity is to map 
the entire observable portion of the information sys-
tem to a string. This string ideally represents data 
points collected over the entire system at every 
instant in time. Note that a data system includes arbi-
trary input, computation, and output. This is 
included as part of the string. Including every possi-
ble input and output will result in an extremely long 
string. From Definition 6.1, complexity is the length 
of the minimal program running on a Universal Tur-
ing Machine that is capable of generating that 
string. There is only one possible length for the 
shortest program; thus the result is a single, ultimate 
quantification of complexity.

The ability of the attacker to compute the com-
plexity of portions of the above string is directly rele-
vant to the attacker’s understanding and ability to 
predict future behavior of the system. This includes 
understanding the system’s vulnerabilities. Using the 
method of computing complexity as described in 
the previous paragraph would lead to an infinite 
string; it is necessary to map the infinite into the 
finite in order to make the process feasible.

There are a few observations that make the pro-
cess more feasible. The first is results-based scoping. 
For example, the attacker is most likely to be inter-
ested in certain very specific results, such as obtain-
ing specific types of information. Thus, the attacker 
can attempt to narrow the observation points in the 
string to only those appear to be promising. On the 
other hand, the defender of the information system 
is primary concerned with intrusions and other fault 
behavior that compromises Information Assurance. 
Thus, the defender can narrow the scope to strings 
that contain results that lead to those outcomes.

The second is spatial scoping of the string. For 
example, the defender can compute the complexity 
of various components in the system, instead of the 
entire system. For example, only portions of the sys-
tem relevant to information access can be analyzed. 
The result is a mosaic of localized complexity mea-
sures of the system. This is equivalent to computing 
complexity over various portions and widths of the 
string. As shown in Section 6.2, the composition of 
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two components results in a complexity that is no 
larger than the sum of the complexities. 

The network insecurity path analysis tool and 
complexity-based vulnerability analysis
An experimental prototype tool has been developed 
that combines the grid-based vulnerability analysis 
technique with the complexity-based vulnerability 
analysis method developed in this project. This sec-
tion discusses the enhanced tool shown in 
Figure 127.

Every information system is assumed to take data 
of some form as input, process the data, and return 
data as output in some form. Essentially, every infor-
mation system can be defined as a mathematical 
operation. Information systems developed by 
humans today tend to be highly structured in order 
to be tractable in their development and mainte-
nance. Generally, there are well-defined data flows 
and processing functions within the information sys-
tem. The system is composed of a hierarchical com-
position of functional units. This is especially true in 
legacy network systems where layered design is ubiq-
uitous. For these systems, one can imagine complex-
ity probes located at the input and output of every 
functional unit in the system. This allows determina-
tion of the vulnerability of each process and data 
stream at a very granular level. This provides a com-
plexity-based vulnerability map for the system. A 
potential attacker would be unlikely to have such a 
detailed understanding of a target information sys-
tem; an optimization to this technique is to limit 
probe locations to only those locations likely to be 
observable to an attacker. The vulnerability map is 
used to determine insecurity flow through the sys-

tem. Complexity is viewed as resistance to attack. 
Both a most likely path and a maximum flow algo-
rithm are applied in this experimental complexity-
based vulnerability analysis tool. The most likely 
path is determined by finding the lowest complexity 
path from a given attack point to a given target 
point. The maximum flow algorithm assumes that 
lower complexity paths have a greater capacity. The 
question arises as to what “flow” means in terms of 
complexity. Firstly, the entire foundation of com-
plexity-based vulnerability analysis rests upon the 
likelihood, or probability, of attack being successful 
upon the low complexity locations of an information 
system as per Hypothesis 9.1. The complexity probe 
values are displayed as links in the complexity tool 
display shown in Figure 127. The values of the links 
are 1/K and these values are normalized to 1.0 for 
each node in order to obtain a probability of success-
ful attack upon each link. The maximum flow algo-
rithm provided by this tool shows the optimized 
placement of resources by an attacker to maximize 
the likelihood of a successful attack.

The distribution of insecurity information
The approach to measuring the complexity of a sys-
tem, as described throughout this document, results 
in determining the ease with which a potential 
attacker can understand the system. It does not 
directly account for the fact that information about 
the target system can be obtained by a potential 
attacker in algorithmic form, that is, in the form of 
an attack tool. Such a tool does not require the 
attacker to understand its operation. The attack tool 
is like an active packet, or a parasite that depends 
upon its host for transportation. This is distinct from 
a virus, whose primary function is replication and 
transport. For example, an attacker may have little 
understanding of a particular system, yet download 
an attack tool that allows the attacker to perform a 
successful attack. Thus, the distribution of attack 
knowledge needs to be considered. Once an attack 
tool is in the hands of an attacker, the apparent com-
plexity is greatly reduced. There is an interesting 
feedback mechanism here; data that can reduce the 
apparent complexity to a potential attacker needs to 
be kept secure by the defender. Once obtained by an 
attacker, a significant drop in apparent complexity 
occurs, potentially leading to further significant 
reduction in apparent complexity as more vulnera-
bility information is obtained and disseminated to 
other attackers.

Figure 127.  Prototype tool combining the grid-based vulnera-
bility analysis technique with the complexity-based vulnera-
bility analysis method. 
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6.3 Complexity-Based Vulnerability Analysis

One might view the evolution of complexity in 
the following terms. An information system is built. 
Initially, an attacker discovers its least complex com-
ponents. The attacker decides to automate his attack 
(active) and/or publish the mechanism to accom-
plish the attack (passive). This information is dis-
seminated through the population. Meanwhile the 
information system defenders, usually after consid-
erable delay, discover the attack mechanism and 
patch the hole. The population of attackers, build-
ing upon their knowledge, exploits the next least 
complex link from their view in the information. 
The defenders eventually close this hole. The cycle 
continues ad infinitum. The cycle of attack and 
defense can be viewed through complexity as a 
cycle, or evolution of complexity as shown in 
Figure 128. Low complexity portions of a system will 
eventually be learned and disseminated by an 
attacker. To account for this dissemination of low 
complexity information, defenders reinforce the low 
complexity areas with more complexity. The results 
of this project allow system developers to understand 

not only where the vulnerable portions of the system 
are located, but to engineer their systems in such a 
manner as to control the cycle shown in Figure 128. 
This process can be modeled as low complexity por-
tions of an information system that evolve in com-
plexity over time.

Figure 128.  Cycle of attack and defense viewed through com-
plexity as a cycle, or evolution, of complexity. 
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7. Self-Healing Information System
A Coherent, Self-Healing System
Self-Composition, Genetic Algorithms, and Kolmogorov 
Complexity 

 Fault tolerant and self-healing systems should have 
the ability to self-compose solutions to faults. This 
should be an inherent part of system operation, 
rather than a structure imposed from “outside” the 
system. Genetic Algorithms are on the path towards 
self-composing solutions, however genetic algo-
rithms, as implemented today, require external con-
trol to manipulate the genetic material. In other 
words, the genetic algorithm itself must be pro-
grammed into the system; if the genetic algorithm 
code failed, then the self-healing capability would 
fail. While this situation is not ideal, it is explored as 
a possible step towards a truly self-healing system.
Active networking is a novel approach to network 
architecture in which network nodes—switches, 
routers, hubs, bridges, gateways etc. —perform cus-
tomized computation on packets flowing through 
them. The network is called an “active network” 
because new computations are injected into the 
nodes dynamically, thereby altering the behavior of 
the network. Packets in an active network can carry 
fragments of program code in addition to data. Cus-
tomized computation is embedded within the 
packet’s code, which is executed on the intermedi-
ate network nodes.

Many active network components and services 
have been designed, implemented, and are under-
going experimentation. The ABone (Active Network 
Backbone) implements a relatively large-scale (given 
the novelty of the technology) active network 
(O(100) nodes). However, the fundamental science 
required to understand and take full advantage of 
active networking is lagging behind the ability to 
engineer and build such networks. In fact, the cur-
rent Internet, whose protocols were built upon the 
ill-defined goal of simplicity are only slowly being 
understood. An outcry from the Internet commu-
nity, with its carefully crafted, static protocol process-
ing, with massive documentation (O(4000) Request 
for Comments) of passive (non-executable) packets 
is that it is already “too” complex.

An adaptive fault tolerant system, no matter how 
resilient, would unlikely receive acceptance by indus-
try or the community if it were considered “com-
plex” in the colloquial sense. How can such systems, 
which require complexity to be adaptive, at the same 
time appear simple to understand and manage. Are 
active networks really more complex than the cur-
rent Internet? Are adaptive applications built upon 
active networks any more or less complex than the 
same applications built upon the legacy Internet? 
Does a measure of complexity exist that would allow 
an objective comparison to be made? What are the 
benefits of an active network with respect to passive 
networks? While these are extremely difficult ques-
tions to answer, this report attempts to lay the 
groundwork for answering these questions by pro-
posing a complexity measure, Kolmogorov Com-
plexity, and proposing an adaptation mechanism, 
Genetic Programming, based upon an analogy with 
biological systems.

Kolmogorov Complexity was applied as a measure 
of potential algorithmic information content for use 
in prediction and control of an active network [185]. 
In the remainder of this paper, the term complexity 
will be used to indicate a particular form of com-
plexity known as Kolmogorov Complexity. Kolmog-
orov Complexity is a measure of the length of the 
smallest program, such that, when executed upon a 
Universal Turing Machine, it generates a particular 
string of bits x. The length of such a smallest pro-
gram K(x) is the complexity of the bit-string, x. It 
should be noted that research has been performed 
in the use of genetic programming to evolve the 
smallest program for a given bit-string, and thus esti-
mate K(x). Complexity was applied to optimize the 
combined use of communication and computation 
within an active network; to determine the optimal 
amount of code versus data [185]. It was shown that 
if the Kolmogorov Complexity of the information 
related to the prediction of the future state of the 
network is estimated to be high, then the ability to 
develop code, representing the non-random, or 
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algorithmic portion, of that information is low. This 
results in a low potential benefit for algorithmic cod-
ing of the information; the benefit of having code 
within an active packet would appear to be minimal 
in such cases. Conversely, if the complexity estimate 
is low, then there is great potential benefit in repre-
senting information in algorithmic form within an 
active packet. It was suggested that if the algorithmic 
portion of information changes often and impacts 
the operation of network devices then active net-
working provides the best framework for implement-
ing solutions[185]. This is precisely the case in 
genetically programmed network services, a new 
class of services that are not pre-defined but those 
that evolve themselves in the network in response to 
the state of the network. In this report, we will 
restrict this class to those services that are program-
matic solutions for perceived faults that occur in a 
network. Further research is required to generalize 
this class to include other types of network services.

Frameworks for protocol and service composition 
have been developed for active networks, one of 
which is well described [186]. Thoughts on the 
requirements for protocol and service composition 
are also discussed in [187]. However, the work done 
to date is lacking in that it does not address how 
active code will be generated rapidly enough to 
make dynamic injection of the code a significant fac-
tor. The argument against active and programmable 
networks is that, given enough time, memory, and 
processing power, legacy systems could eventually 
contain all the functionality that active networks 
could have injected. To do this, legacy developers 
would have to know {\em a priori} all possible func-
tionality that would be required in the network. 
However, this report demonstrates that it is possible 
for the network to generate code rapidly and in a 
manner that can never be known {\em a priori} for 
every possible condition. The inspiration for a 
genetic algorithm based approach to solution com-
position comes from nature in the form of the dock-
ing problem in molecular biology [188]. Solutions 
that efficiently match a particular fault should be 
able to “dock” with the fault. Prediction for success-
ful docking in biology can be attempted by search-
ing for minimal energy or minimal geometric 
construction combinations. Here we consider a 
genetic algorithm used to generate a solution for the 
self-composition of solutions to mitigate network 
faults. One goal of the experiment discussed later in 
this report is to study the relationship between com-

plexity and solution composition. In particular, it 
has been hypothesized that the complexity of the 
fault and potential solution will decrease as the opti-
mal solution is composed. Specific examples of 
faults that could be simulated are: 

• Network mis-configuration
• Bandwidth and Processor mis-allocation
• Faults caused by Distributed Denial of Service 

and virus attacks
• Poor Traffic shaping
• Routing problems
• Non-optimal fused data within the network
• Poor link quality in wireless and mobile 

environments
• Mal-composed protocol framework models in 

the network
• Poorly tuned components of network services

A simple fault, namely, mis-allocation of band-
width and processing capability resulting in packet 
jitter, has been chosen as a working example. A fit-
ness function defines a metric for “goodness” of a 
population. In this case, “goodness” is the reduction 
in the variance of packet arrival times. The fault is 
represented by the difference between the actual sys-
tem and a minimum required fitness. Genetic mate-
rial will evolve to minimize the effect of the fault. 
The complexity of the combined fault-solution pair 
should be at a minimum when the fitness is optimal. 
We will borrow a term from molecular biology and 
call a perfectly matched fault and solution a success-
ful “docking”. 

COMPLEXITY AND EVOLUTIONARY CONTROL
Complexity and evolution are intimately linked. Kol-
mogorov Complexity (K(x)) is the optimal compres-
sion of string x. This incomputable, yet fundamental 
property of information has vast implications in a 
wide range of applications including system manage-
ment and optimization[192] [193], security 
[194],[195], and Bioinformatics. Active networks 
[196] form an ideal environment in which to study 
the effects of trade-offs in algorithmic and static 
information representation because an active packet 
is concerned with the efficient transport of both 
code and data. As noted inFigure 129, there is a 
striking similarity between an active packet and 
DNA. Both carry information having algorithmic 
and non-algorithmic portions. The algorithmic por-
tion of DNA has transcription control elements as 
well as the codons [197]. The active packet has con-
trol code and may contain data as well.
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Kolmogorov Complexity and Genetic Program-
ming have complementary roles. Genetic Program-
ming has been used to estimate Kolmogorov 
Complexity [198], [199]. Genetic Programming 
benefits from Kolmogorov Complexity as a measure 
and means of controlling not only the complexity, 
but the size and generality of the result [200]. One 
of the most obvious uses for complexity in network-
ing is Programmatic Compression [201]. In this 
report, the foundation is developed for the use of 
complexity to enable the network to self-heal. In the 
next section, a description of the Minimum Descrip-
tion Length algorithm and its role in Active Net-
works is explained.

THE APPLICATION OF COMPLEXITY IN A 
COMMUNICATIONS NETWORK
The goal of the system that has been implemented is 
to utilize the benefit of an active network to auto-
matically generate solutions that bring the network 
back into line with a healthy model of the system. 
The fitness function is used to describe the desired 
outcome. The concept of molecular docking, men-
tioned previously, requires a more precise measure-
ment of the degree of “fit” in the docking of a fault 
and solution. In this project, we are exploring the 
use of Kolmogorov Complexity, estimated via the 
Minimum Description Length algorithm, as the 
means to measure the fit between the fault and the 
desired state. The next paragraph describes the Min-
imum Description Length complexity estimator and 
its relationship to active networking. 

A question active network application developers 
must answer is: “How can I best leverage the capabil-
ities that active networks have to offer?” Because the 

word “active” in active networks refers to the ability 
to dynamically move code and modify execution of 
components deep within the network, this typically 
leads to another question: “What is the optimal pro-
portion of content for an active application that 
should be code versus data?” A method for obtain-
ing the answer to this question comes from direct 
application of Minimum Description Length (MDL) 
[202] to an active packet. Let Dx be a binary string 
representing x. Let Hx be a hypothesis or model, in 
algorithmic form, that attempts to explain how x is 
formed. Later in this report, we view  as a predic-
tor of x in the analysis of Active Virtual Network 
Management Prediction. For now let us focus on 
developing a measure of the complexity of x. MDL 
states that the sum of the length of the shortest 
encoding of a hypothesis of two components will 
estimate the Kolmogorov Complexity. The two com-
ponents are the length of a model generating string 
x and the length of the shortest encoding of x using 
the hypothesis. This can be represented mathemati-
cally as . Note that error in 
the hypothesis or model must be compensated 
within the encoding. A small hypothesis with a large 
amount of error does not yield the smallest encod-
ing, nor does an excessively large hypothesis with lit-
tle or with no error. A method for determining  
can be viewed as separating randomness from non-
randomness in x by “squeezing out” non-random-
ness, which is computable, and representing the 
non-randomness algorithmically. The random part 
of the string, that is, the part remaining after all pat-
tern has been removed, represents pure random-
ness, unpredictability, or simply, error. Thus, the 
goal is to minimize  where 

is the length of string x,  is the estimated 
hypothesis used to encode the string  and E is 
the error in the hypothesis. The more accurately the 
hypothesis describes string x and the shorter the 
hypothesis, the shorter the encoding of the string. 
Choosing an optimal proportion of code and data 
minimizes the packet length.

The proposed hypothesis is that the Kolmogorov 
Complexity of a combined fault and solution 
description is minimized when the optimal solution 
to mitigate the fault is composed. A nearly trivial 
example can be seen with reverse code. Assume that 
fault data, F exists. Assume that the fault does not 
erase data but merely transforms it. Define the algo-
rithmic description of the fault data . The 
reverse code for  will be labeled . Assume 

Figure 129.  DNA and an Active Packet. 
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 and are minimal length programs. Then, 
, where is the empty set. is the 

data generated by . Since the fault does not 
erase any data, the process is reversible [191] and 
therefore, . The equivalence in 
complexity of  and follows because there is no 
loss or gain of complexity when the system is 
restored to a prior state using the anti-fault process 

; there is no work performed. The algorithmi-
cally reversed fault will be referred to as an anti-fault 
in this report.

The descriptive complexity of the fault and the 
solution should ultimately be as low as possible and 
the Minimum Descriptive Length algorithm can be 
used, among other complexity estimators, as a tech-
nique to guide solution composition. In fact, this is 
the case with reversible code. Complexity is impor-
tant information because it is an indicator of both 
the type of fault and level of difficulty in correcting 
the fault and the severity of the fault; fault severity is 
important in triage operations to optimize system 
health. Second, a more compact algorithmic repre-
sentation of a fault will travel faster and more rapidly 
through the network; it is an efficient format for 
alerting system management and in triggering auto-
mated solutions. Third, it can be relatively easy to 
reverse the code of an algorithm, possibly generat-
ing an anti-fault, or solution to a problem in certain 
cases. Reversible code has been presented in previ-
ous work as a mechanism for generating anti-mes-
sages in Time Warp simulation [203].

Fault tolerant and self-healing systems should 
have the ability to self-compose solutions to faults. 
Ideally, composition should be an inherent part of 
system operation, rather than a structure imposed 
from “outside” the system. Genetic Algorithms are 
on the path towards self-composing solutions, how-
ever genetic algorithms, as implemented today, 
require external control to manipulate the genetic 
material. In other words, the genetic algorithm itself 
must be programmed into the system; if the genetic 
algorithm code failed, then the self-healing capabil-
ity would fail. While this situation is not ideal, it is 
explored as a possible step towards a truly self-heal-
ing system.

One of the contributions of this report is the 
study of complexity in genetic algorithms with the 
goal of eventually designing self-composing solu-

tions. Genetic algorithms are widely known for their 
ability to find optimal solutions, avoiding local 
extremes, by using evolutionary-like processes 
dependent upon “random” mutation. Kolmogorov 
Complexity describes the randomness of informa-
tion. The Kolmogorov Complexity of the genetic 
material during the evolution of a genetic algorithm 
can be estimated and yields interesting clues about 
the underlying physics of the information during its 
evolution towards a fitness function. It is our hypoth-
esis that, as the evolution proceeds and the fitness 
level of the genetic material rises, the complexity 
decreases. This result yields an interesting insight 
that supports the hypothesis that “solutions” that 
self-compose to mitigate a fault will tend to decrease 
in complexity.

THE GENETIC ALGORITHM
The goal of this study is to examine how complexity, 
specifically an estimate of Kolmogorov Complexity, 
relates to the evolution of a self-composing solution. 
We consider a genetic algorithm to be an approxi-
mation of a self-composing system. Details on the 
operation of genetic algorithms can be found in 
[204] [205] [206]. This paper assumes a basic 
understanding of genetic algorithm operation and 
provides only a brief overview. In this experiment a 
pre-existing Mathematica genetic algorithm pack-
age3 is used. The decision to use Mathematica was 
based upon its combination of symbolic and arith-
metic capabilities and because many of our research 
utilities, including Kolmogorov estimation func-
tions are implemented in Mathematica.

The genetic algorithm package assumes a popula-
tion of binary strings of preset size and whose values, 
when converted to a float type, are between zero and 
one. Similarly, the fitness function is assumed to 
accept and return values in the range from zero to 
one. Fitness values closer to one are assumed indi-
cate more highly optimized results. A genetic algo-
rithm consists essentially of three parts: selection, 
crossover, and mutation. In selection, each string is 
selected with a probability proportional to its fitness 
value. In crossover, a pair of selected strings is deter-
mined, a position along the string is chosen at ran-
dom, and the right and left parts of each string are 
swapped. In mutation, each gene is changed at ran-
dom with a low probability, in this case a probability 

PF( ) RPF( )
RPF PF( )( ) φ= φ RF

RPF( )

K RF( ) K F( ) 0=–
RF F

RPF

3. Written by Mats G. Bengtsson National Defense Research Establishment Box 1165, S-581 11 Linkoping Sweden email: mat-
ben@lin.foa.se
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of 0.002 was chosen based upon repeated experi-
mentation. Each individual is coded as a binary 
string of length10 bits. This length provides the size 
necessary to achieve numerical precision while 
being small enough to allow a large population size 
and without excessive overhead. The problem is lim-
ited to one-dimension with value x, which represents 
the real value of the bits in string x, that varies from 
zero to one. The first step is to create a random pop-
ulation. The population is defined on the real axis 
from zero to one. The random values are repre-
sented in the form of binary strings. Next a fitness 
function is defined. It is defined in the interval zero 
to one. The fitness function in this example is 
defined as . Thus, binary representa-
tions of values that are odd multiples of 0.5 will have 
maximal fitness.

Kolmogorov Complexity
This section discusses a general approach for self-
composing solutions using lessons learned from the 
previous section. The approach can be described as 
the automated generation of a solution hypothesis 

, that is, the reverse of the algorithmic 
difference between the faulty and correct algorith-
mic representation of behavior by controlled means. 
As deviates from , complexity or heat as pre-
sented here, is generated. In [192] the relationship 
between fault and energy is explored and simulated 
(see [195], [194], [207] for recent work on com-
plexity and energy and Information Assurance). The 
motivation for that experiment came from the rela-
tionship between Kolmogorov Complexity and 
entropy. The definition and application of Kolmog-
orov Complexity to vulnerability analysis identified 
how Kolmogorov Complexity can be used to deter-
mine vulnerabilities in a system as areas of low com-
plexity. An underlying hypothesis of our work is that 
computation and communication are fundamentally 
related through complexity theory, and, thus, band-
width and processing utilized in denial of service are 
fundamentally interrelated. Low complexity data or 
code consuming large amounts of bandwidth or pro-
cessing indicates the likelihood of an attack. A 
model of complexity evolution within a closed sys-
tem is described in reference [194]. That reference 
developed an abstract model with which to study 
complexity, specifically Kolmogorov Complexity, of 
information within an information system. That 
model explores , a measurement of length in 
bytes, and , a measure of the maximum 

increase in complexity of the system due to code 
entering a system such as code carried by active 
packets. The rate of complexity increase in terms of 
algorithmic active packet complexity in units of 

 within the closed system was measured. Sig-
nificant changes in system complexity indicate the 
presence of faults. Reference [208] reported the 
results of Kolmogorov Complexity probes that 
detect Distributed Denial of Service attacks.

An active network environment is used to empha-
size that information assurance laws must be able to 
deal with many alternative and dynamically chang-
ing representations of information. With regard to 
active packets and information theory, passive data is 
simple Shannon compressed data, and active pack-
ets are a combination of data and program code 
whose efficiency can be estimated by means of Kol-
mogorov Complexity [209]. The active network Kol-
mogorov Complexity estimator is currently 
implemented with a variety of compression estima-
tors ranging from simple empirical entropy to more 
complex algorithms beyond the scope of this confer-
ence. The probe returns an estimate of the smallest 
compressed size of a string. The simplest estimator, 
trading accuracy for speed and low overhead, is 
based upon computing the entropy of the weight of 
ones in a string. Specifically it is defined in 
Equation 19where  is the number of 1 bits and 

 is the number of 0 bits in the string whose com-
plexity is to be determined. Entropy is defined in 
Equation 20. See [209] for other measures of empir-
ical entropy and their relationship to Kolmogorov 
Complexity. The expected complexity is asymptoti-
cally related to entropy as shown in Equation 21. 
Observe an input sequence at the bit-level and con-
catenate with an output sequence at the bit-level. 
This input/output concatenation is observed for 
either the entire system or for components of the 
system. Low complexity input/output observations 
quantify the ease of understanding by a potential 
attacker. Previous work has demonstrated the use of 
Kolmogorov Complexity for Distributed Denial of 
Service (DDoS) attack detection [208].    
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Because Kolmogorov Complexity was originally 
derived for the study of randomness, it is interesting 
to note that randomness plays a significant role in 
the operation of the genetic algorithm itself. The 
initial genetic material should be generated ran-
domly. Selection of genes for mutation and cross-
over points should also be done randomly. Finally, 
selection of gene pairs is done randomly, but in pro-
portion to their fitness value.

Given the randomly generated nature of the ini-
tial genetic material, one would expect the complex-
ity of the genetic material to decrease as the genetic 
algorithm evolves. This is clearly the case in the ini-
tial steep downward spike shown in Figure 130. As 

the algorithm continues to evolve and the fitness of 
the genetic material improves, one would expect 
structure and order to appear. As mentioned earlier, 
in this specific case, the algorithm encourages the 
growth of binary strings that represent odd multi-
ples of 0.5.

Figure 131 shows the complexity, estimated as the 

compressed size, of the genetic material as a func-
tion of evolutionary steps. Compare with Figure 132, 

which shows the sum of the fitness values as a func-
tion of evolutionary steps. The complexity decreases 
as the cumulative fitness function increases, then 
rises again while evolution continues however, the 
fitness function does not significantly increase. The 
complexity measure seems to indicate that the first 
optimal genetic composition was found near evolu-
tion step 50. As the genetic algorithm continued 
beyond that point, the genetic material became 
more complex again with no corresponding benefit 
in fitness. This result was unanticipated, but is plausi-
ble as new solutions evolve, with varying complexity, 
attempting to maximize fitness.

The cumulative fitness function results (multi-
plied by 10 to shift upward for easier comparison 
with the estimated complexity) are shown in 
Figure 132. Note that the points of high complexity 

always coincide with points of low cumulative fitness. 
Points of relatively low complexity correspond to 
high cumulative fitness. Arrows point to the extrema 
in the cumulative fitness function and estimated 
complexity that can be seen to align with extrema in 
the fitness function. In particular, minima in esti-
mated complexity occur simultaneously with oppos-
ing maxima in the fitness. This indicates an inverse 
relationship between complexity and cumulative fit-
ness extreme points.

Consider the complexity of the fitness function 
itself. The fitness function is an algorithmic repre-
sentation of the fitness of a chromosome. The range 
resulting in maxima generated from the fitness func-
tion forms a string that represents the target com-
plexity. In this particular genetic algorithm example, 
a solution of 0.5 for all 128 members of the popula-
tion would yield an estimated complexity of 611.3. 
This low a level of complexity was never reached for 
two reasons: there are multiple optimal solutions, 

Figure 130.  Complexity of Genetic versus Evolutionary Time 
Steps with Population 128. 

Figure 131.  Cumulative Fitness Function of Genetic Material 
with Population 128. 

Figure 132.  Complexity and Fitness Comparison. 
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namely odd multiples of 0.5, and the algorithm 
never exactly achieved odd multiples of 0.5, but 
rather approximately close values. The remaining 
sections discuss how these concepts have been 
implemented to construct a fault tolerant network.

TOWARDS A SELF-EVOLVING NETWORK 
SYSTEM
Other papers from the Imperishable Networks 
Project have developed complexity-based techniques 
for fault detection and identification as discussed in 
[210] and [193]. The focus of this report is on 
progress towards self-composition of solutions 
assuming that other techniques, particularly com-
plexity-based techniques, have identified faults. A 
problem with the genetic algorithm-based approach 
as previously described for use as a self-evolving sys-
tem is that control is generally external to the 
genetic material and the genetic material is gener-
ally considered to be passive data. Instead the 
genetic material should be capable of being algorith-
mic information, that is, program code or objects. In 
addition, each chromosome, as an object, should 
contain the necessary capability to run the genetic 
algorithm. This would allow for a highly distributed 
and robust genetic algorithm capable of fault mitiga-
tion where the fault is represented through the fit-
ness function.

A criticism of this approach might be that a genet-
ically-engineered protocol stack will create a com-
plex framework that will be difficult to understand 
and maintain. However, our approach is to compose 
the framework from simple components. Each of 
these components will be individually verifiable with 
respect to its properties and actions. As the compo-
nents are arbitrarily composed to form a protocol 
stack, some protocol stacks may be generated that 
violate the principles of safety, consistency and cor-
rectness. One way to approach this is to define a fit-
ness function that verifies the suitability of the stack 
with respect to the properties desired. Any mis-con-
figured protocol stacks are automatically eliminated 
from consideration if the fitness function is carefully 
defined to check for the above-mentioned proper-
ties. However, this might make the definition of the 
fitness function itself cumbersome as every possible 
stack composition property will have to known a pri-
ori and an appropriate fitness “filter” defined. This 
will lead to a loss of elegance in the fitness function 
definition and consequently poor maintainability. A 
better approach would be to define syntactic and 

certain semantic composition properties in the indi-
vidual components themselves, possibly in the form 
of logical expressions. These expressions will 
enforce constraints on the behavior of the compo-
nents, which can be verified at run-time. The run-
time system will embed a theorem-prover, which can 
be either a full-blown prover like PVS, NuPrl or SPIN 
or a reduced version of one, to systematically verify 
properties during composition itself. This reduces 
the burden on the programmer to define a proper 
fitness function that can catch and eliminate all 
types of composition errors.

Approach
Genetic material begins in a random state (M), and 
converges to the complexity of the optimal value 
produced by the fitness function. This enables true 
solution composition from a wide range of possible 
solutions. One problem with this approach is the 
time required evolving towards a feasible solution. 
Another problem is the fitness function itself has to 
be self-generated in some manner. Using Active 
function exists in the form of  where  is the 
estimatedVirtual Network Management Prediction 
[196], the fitness correct operation hypothesis of the 
system as described in [185].

In summary, the experiment in this section has 
shown a relationship among fitness, complexity, and 
the evolution of genetic material. Complexity esti-
mation probes have been embedded in the General 
Electric Global Research Center Active Network test-
bed for use in security experimentation. The next 
section explains the framework  developed to utilize 
the same complexity probes described in [208] to 
control the evolution of a genetic program within 
the active network. This makes the network highly 
resilient to faults by enabling the capability to adapt 
in a wide variety of ways.

GENETIC NETWORK PROGRAMMING 
ARCHITECTURE
The Magician Active Network [196] overlay network 
is used to test the feasibility of the genetically pro-
grammed network service concept. An active packet 
representing the nucleus (assuming network nodes 
are like eucaryotes- cells containing nuclei) is 
injected into all the `network nodes. The nucleus 
contains a population of chromosomes-- strings of 
functional units. Operation of Genetic Network Pro-
gramming begins with the injection of basic building 
blocks, known as functional units, into the network 

He He
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as shown in Figure 133. Cur rently, this “genetic 

material” is flooded into each active node. However, 
the material will remain inactive in each active node 
until a fitness function is injected into the network. 
Receipt of a fitness function will cause evolution to 
proceed.

Functional units are very small pieces of code 
blocks that perform simple, well-defined operations 
upon an active packet. Examples of functional units 
are Delay, Split, Join, Clone, and Forward. There is also 
a Null functional unit whose use is explained later. 
Chromosomes are strings of functional units as 
shown in Figure 134. Once a chromosome is assem-
bled, the codons can be translated into Amino Acids 
at the Ribosomes. In other words, the string of func-
tional units will operate upon active packets from 
other applications (or other functional units) that 
traverse through the node. The chromosome is rep-
resented in the code in a form similar to a Lisp sym-
bolic expression, for example: ((Null Join Split) (Delay 
Split Join Delay)).

Mutation and recombination occur among a pop-
ulation of genes. Mutation is a probabilistic change 
of a functional unit to another functional unit. 
Recombination is the exchange of chromosome sec-
tions from two different chromosomes. In 
Figure 135, a close-up of a single node can be seen 
containing a very short chromosome strand.

A single incoming traffic stream, as shown in 
Figure 136 entering the center node, is split into 
multiple streams. Each stream is processed by a dif-
ferent chromosome. Note that currently in our 
implementation, the full traffic stream is split along 

each chromosome, however, it is hypothesized that 
traffic sampling could be used to reduce the over-
head in creating the multiple streams.

Figure 133.  Injection of the Nucleus. Figure 134.  Functional Units, Evolution, and Fitness. 

Figure 135.  Single Node Genetic Programming Architecture. 

Figure 136.  Breeding Traffic Streams. 
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 7. Self-Healing Information System

As shown in Figure 137, fitness functions can be 
designed to measure quality at different layers of the 
traditional protocol stack. In this particular case, fit-
ness measures are shown at the Transport, Network, 
and Link Layers. As a particular example, jitter con-
trol might have a fitness function that minimized 
per frame variance at the Link Layer. The Network 
Layer would attempt to maximize packet arrives at 
the destination in the reasonable time period, that is 
perform the routing function. The Transport Layer 
would have a fitness function that attempts to mini-
mize end-to-end packet variance. The key is that 
each of these fitness functions need to work together 
towards reaching the stated goal in a reasonable 
manner. More will be said about the fitness function 
later.

In Figure 138, recombination can occur both within 
a node or between two nodes. In addition, as shown 
in Figure 139, changing the route of a packet also 
effectively accomplishes a recombination because 
the packet processing will be dependent upon the 
genetic material at each node traversed.

A key component of the evolutionary process is 
the fitness function. Fitness functions are ``user'' 
defined and injected into the network to control the 
evolution of the genetic population. For example, in 
our initial tests, minimizing variance in transmission 
time was used as a simple fitness function. However, 
initial experiments quickly demonstrated that the 
design of the fitness function is the most critical ele-
ment. It reminds one of the saying, ``Be careful of 
what you pray for..., because you might get it.'' Often 
the fitness was achieved, but in ways that were unex-
pected and sometimes detrimental to the intended 

operation of the network. As a trivial example, the 
variance can be minimized by slowing the traffic to a 
near halt. Thus, a low latency term had to be added 
to the jitter control fitness function.

Genetically programmed active network jitter 
control
As a feasibility test, an adaptive jitter control mecha-
nism was developed on a fixed, wired active commu-
nication network having the topology shown in 
Figure 139. The genetic algorithm was implemented 
as an active application in the Magician Active Net-
work Execution Environment [196]. Packets origi-
nate from the left-most node in Figure 139and are 
destined for the right-most node in the figure. The 
dominant contributors to packet link transit time 
variability given the topology shown in Figure 139 
are the fact that the active network is an overlay net-

Figure 137.  Multiple Levels of Fitness. 

Figure 138.  Recombination Levels. 

Figure 139.  Chromosomes and Routing. 

108

Evolution Hierarchies 

(functional units^ functional units2 functional units,) 

(runctioiljal unitsj Inter-node 

combination 

I units^) 

Intra-node 
Recombination 

Genes withm nodes 
mutate 

(functional unitS4) 

Recombination can 
occur between 

and recombinate   imer-PaihRecombination? adjacent nodes 

Multi-Level Fitness Functions 

(functional units, functional unitSj functional units, ) 

(functjoi 

(functior al unitS|) 

±J> 

(functioi al units^) 

titMMs   Jitter Control Example 
function 

(functional unitS4) 

Fitness per node 

and end-to-end 
Transport Layer Fitness 

^^^ Network Layer Fitness 
Link Layer Fitness 

Effective Chromosome Based Upon Route 

(functional unitSj functional units^ functional unitSj) 

(functioi al unitS3) 

(functional units^ functional units^ functional units^ ) 



 

work that has unspecified lower -layer traffic and that 
packets are loaded and executed within a Java Vir-
tual Machine residing in each node and are subject 
to Java garbage collection which runs at unspecified 
times.
The fitness function on all nodes returns a greater 
fitness as the result of a Simple Network Manage-
ment Protocol query of an Object Identifier that 
measures packet link transfer time variance on the 
destination node is minimized. As previously men-
tioned, the fitness function is itself an active packet 
that consists of an objective function. The function 
is highly general and can be comprised of any math-
ematical function of accessible metrics.
Figures 140 through Figure 143 show packet link 
transit variance through three of the chromosomes 
on the destination node and Figure 143 shows 
packet link transit variance without any jitter control 
mechanism at the destination node. Initial observa-
tion of the graphs shows that, overall, particularly as 
time progressed, the Chromosomes significantly 
reduced packet transit variance.

Another observation of the experimental data is that 
the genetically programmed transit variance was ini-
tially worse than transit variance without any control 
mechanism. The reason for this is that the chromo-
somes begin operation with a random set of func-
tional units and require time to converge to an 
optimal value.

Jitter control: a simple test case
While a priori techniques have been developed for 
jitter control in legacy networks, jitter control forms 
a simple, easily measured and  controlled applica-
tion for the network genetic programming tech-
nique. The functional units injected into the 
network should allow evolution of a variety of inter-
esting solutions to reduce variance, including add-
ing delays, forward along different paths, or perhaps 
new ideas that have not been thought of yet.

Figure 140.  Packet Link Transit Variance (milliseconds2) on 
Destination Node Through Chromosome One. 

Figure 143.  Packet Link Transit Variance (milliseconds2) on 
Destination Node Without Jitter Control. 

Figure 141.  Packet Link Transit Variance (milliseconds2) on 
Destination Node Through Chromosome Two. 

Figure 142.  Packet Link Transit Variance (milliseconds2) on 
Destination Node Through Chromosome Three. 
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Conclusions
The most significant result from this project has 
been experimental validation that complexity plays a 
critical role in information assurance and can be 
broadly applied as the basis for security analysis and 
fault tolerant network design. Complexity Theory is 
a large and rapidly evolving science (Figure 1). As 
progress is made in various topics of Complexity 
Theory, the individual topics will help to re-enforce 
each other. For example, Vladimir Gudkov’s results 
in the minimum dimensions required to character-
ize information flow could help develop a better 
Kolmogorov Complexity estimator. Our goal has 
been to reduce the requirement and dependence 
upon detailed a priori information about known 
attacks and detect novel attacks by computing vul-
nerability and detecting anomalous behavior based 
upon an inherent, fundamental property of infor-
mation itself, namely, its complexity and sophistica-
tion. Results of complexity measures applied to 
network protocols, processes, and information have 
been presented and related to Information Assur-
ance and network fault tolerance.

Accurate estimation of Kolmogorov Complexity is 
key to its usefulness in identifying correlation 
between attack flows. We have made progress in 
leveraging and developing in-line communication 
network complexity estimators and we are investigat-
ing and benchmarking more estimators for K(x). 
Estimates of Kolmogorov Complexity provide an 
objective parameter with which to provide informa-
tion assurance through anomaly detection and 
objective model development. The capability of this 
metric is limited in part by the accuracy of its estima-
tion, which must be traded against computational 

expense. The Optimal Symbol Compression Ratio 
complexity and sophistication algorithm may pro-
vide additional capability to discern anomalous 
behavior in information systems. Further research is 
needed to develop strategies for cost-effective use of 
this paradigm across entire systems.

With respect to the DDoS detection technique, its 
performance needs to be compared to more intelli-
gent detection algorithms that are currently in use. 
In particular, its performance has to be measured in 
terms of resource tradeoffs, detection and false-
alarm probability and response time. For example, 
the current technique performs its evaluation on 
the entire content of the packet. Anecdotal evidence 
has shown that performance degrades if the payload 
of the packet is encrypted and the size of the pay-
load dominates the size of the packet. Techniques 
that adapt to payload size have been formulated and 
tested.

The next challenge is continuing the develop-
ment of the K-Map (Kolmogorov Complexity Map of 
a system) and applying theory using Kolmogorov 
Complexity. For example, one significant applica-
tion is identifying and controlling faults and DDoS 
attacks and tracing attacks back to the attacker. The 
fundamental hypothesis is that the attacker can be 
traced using a complexity-based approach because 
attacks must have a common pattern because they 
originate from a common source. We expect that 
advances in Complexity Theory, combined with 
reflective capability enabled by Active Networking, 
will enable significant advances in network fault tol-
erance and adaptation.
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Appendix A
Operation of the Network Insecurity Path

Analysis Tool (NIPAT)
Network Insecurity Path Analysis Tool (NIPAT) 
allows various types of node groupings in order to 
help visualize the vulnerability paths.

In Figure 144, all object types are grouped 
together. The nodes could also be grouped by such 
characteristics as hostname or sub-network. In 
Figure 145, the vulnerabilities that have been identi-
fied and grouped as vectors to vulnerability targets 
have been expanded to show more detail about the 
individual vulnerabilities. 

In Figure 146, 40 parent objects of sun4nbin are 
grouped within a single node. Also note that the 
root account is clearly visible as reachable through 
the vulnerability path. The next paragraph provides 
an example of analyzing a vulnerability graph that provides a 
quick introduction to more of NIPAT’s capabilities.

One of the security assessment operations NIPAT 
can perform is to determine the vulnerability of a 
particular entity given an attack on a particular 
node. The target entity Host C Vulnerability 4 is 
identified by a white cross hair in Figure 147, and 
the attacking node is labeled Attacker with a flow 

identified by the label of its connecting path. The 
optimal vulnerability path is the sum of flows into 
node Host C Vulnerability 4, as shown in Figure 148. 
It has flow strength of 6.0. In Figure 149 the optimal 
path that the attacker can take to reach the target is 
shown in yellow. Thus NIPAT provides the ability to 
examine how the placement of security safeguards 
such as intrusion detectors within the network affect 
total network security. In effect, this tool becomes a 
security-modeling tool, where one can experiment 
with the placement of security safeguards represent-
ing such entities as firewalls, intrusion detectors, and 
access lists. These can be positioned at various loca-
tions in order to determine network security.

There are two main algorithms that can be run in 
NIPAT; the first is a probabilistic analysis and the sec-
ond is a maximum flow analysis. Let us start with the 
probabilistic analysis. Select a node to be the target of the 
attack by clicking on the Select Nodes toggle button. Then 
select a node; in this case we have selected Host C 
Vuln 4. A white cross hair will appear over the node 
to indicate it has been selected. Choose Algorithms and 

Figure 144.  Attack Vectors. 
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Security Analysis Models and finally choose Probabilistic 
Analysis. A text window, shown in Figure 148, should 
appear which states the probability of successful 
attack followed by the result graph shown in 
Figure 149. The result graph shows the most proba-
ble path of attack highlighted. The edge values are 
normalized between zero and one to represent the 
probability of an attacker choosing that path.

Now let us re-run the analysis using the maximal 
flow algorithm [12]. Choose File and Open GML. Then 
choose the gml directory and choose the example.gml file. 
The graph window should appear. Select Host C Vul n 

4 again and choose Algorithms and Security Analysis 
Models and Max Flow Analysis. The text window 
shown in Figure 150 should appear as well as the 
graph results shown in Figure 151. The edge values 
have been changed to show the maximum flow 
along each edge towards the target node. In this 
case there is a flow of 1.0 and a flow of 5.0 that can 
reach the target node. 

Figure 145.  Vector Graph Expanded View. 

Figure 146.  Target Details Expanded. 
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Figure 147.  Probabilistic Attack Path Analysis. 

Figure 148.  Probability of Attack. 

Figure 149.  Most Likely Attack Path. 
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Figure 150.  Maximum Flow Results. 

Figure 151.  Maximum Flow Graph. 
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Appendix B
Draft Standard: Inline Network Management

B.1. IN-LINE NETWORK MANAGEMENT 
PREDICTION DRAFT-IETF-BUSH-INLINE-
PREDICTIVE-MGT-00

Status of this Memo
• This document is an Internet-Draft and is in 

full conformance with all provisions of Section 
10 of RFC2026.

• Internet-Drafts are working documents of the 
Internet Engineering Task Force (IETF), its 
areas, and its working groups. Note that other 
groups may also distribute working documents 
as Internet- Drafts.

• Internet-Drafts are draft documents valid for a 
maximum of six months and may be updated, 
replaced, or obsoleted by other documents at 
any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them 
other than as “work in progress.”

• The list of current Internet-Drafts can be 
accessed at http:// www.ietf.org/ietf/1id-
abstracts.txt.

• The list of Internet-Draft Shadow Directories 
can be accessed at 
http://www.ietf.org/shadow.html.

• This Internet-Draft will expire on December 30, 
2002.

• Copyright Notice: Copyright (C) The Internet 
Society (2002). All Rights Reserved.

Abstract
In-line network management prediction exploits 
fine-grained models of network components, 
injected into the communication network, to 
enhance network performance. Accurate and fast 
prediction of local network state enables more intel-
ligent network control resulting in greater perfor-
mance and fault tolerance. Accurate and fast 
prediction requires algorithmic capability. Active 
and Programmable Networking have enabled algo-
rithmic information to be dynamically injected into 
the network allowing enhanced capability and flexi-
bility. One of the new capabilities is enhanced net-
work management via in-line management code, 
that is, management algorithms embedded within 
intermediate network devices. In-line network man-

agement prediction utilizes low-level algorithmic 
transport capability to implement low-overhead pre-
dictive management.

 A secondary purpose of this document is to pro-
vide general interoperability information for the 
injection of general purpose algorithmic informa-
tion into network devices. This document may help 
in some manner to serve as a temporary bridge 
between Internet Protocol and Active and Program-
mable Network applications. This may stimulate 
some thought as to the content and format of “stan-
dards” information potentially required for Active 
Networking. Management of the Internet Protocol 
and Active and Programmable Networking is vital. 
In particular, coexistence and interoperability of 
active networking and Internet Protocol manage-
ment is specified in order to implement the injec-
tion of algorithmic information into a network.

Implementation Note
This document proposes a standard that assumes 
the capability of injecting algorithmic information, 
i.e. executable code, into the network. Active or pro-
grammable capability, as demonstrated by recent 
implementation results from the DARPA Active Net-
work Program, Active Internet Protocol [8] or 
recent standards in Programmable Networking [9], 
help meet this requirement. While in-line predictive 
management could be standardized via a vehicle 
other than active packets, we choose to use active 
networking as a convenient implementation for 
algorithmic change within the network.

B.2. INTRODUCTION
This work in progress describes a mechanism that 
allows a distributed model, injected into a network, 
to predict the state of the network. The concept is 
illustrated in Figure 152. The state to be predicted is 
modeled within each actual network node. Thus, a 
distributed model, shown in the top plane, is formed 
within the actual network, shown in the bottom 
plane. The top plane slides ahead of wallclock time, 
although in an asynchronous manner. This means 
that each simulated node MAY have its own notion 
of simulation time.
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This concept opens up a set of interoperability 
issues which do not appear to have been fully 
addressed. How can distributed model components 
be injected into an existing network? In-line models 
are injected into the network assuming the overlay 
environment shown in Figure 153. In-line models in 
Figure 152 are designed to run as fast as possible in 
order to maintain a simulation time that is ahead of 
wallclock, communicating via virtual messages with 
future timestamps. What if messages are processed 
out-of-order because they arrive out- of-order at a 
node? How long do you wait (and slow your simula-
tion down) to make sure they are not out-of-order? 
This specification provides a framework that allows 
synchronization to be handled in any manner; e.g. 
via a conservative (blocking) or optimistic (Time-
Warp) manner within the network. Additionally, 
how can the models verify and maintain a reason-
able amount of accuracy? A mechanism is provided 
in this document to allow local verification of predic-
tion accuracy. Attempts to adjust accuracy are imple-
mentation dependent. How do independent model 
developers allow their models to work coherently in 
this framework? Model operation is implementation 
dependent, however, this specification attempts to 
make certain that model messages will at least be 
transported in an inter-operable manner, both 
across and WITHIN, intermediate network devices. 
How does one publish their model descriptions? 
How are predicted values represented and accessed? 
Suggestion solutions for these questions are pre-
sented in this document as well.

Overview
In-line predictive network management, which 
enables greater performance and fault tolerance, is 
based upon algorithmic information injected into a 
network allowing system state to be predicted and 
efficiently propagated throughout the network. This 
paradigm enables management of the network with 
continuous projection and refinement of future 

state in real time. In other words, the models 
injected into the network allow state to be predicted 
and propagated throughout the network enabling 
the network to operate simultaneously in real time 
and in the future. The state of traffic, security, mobil-
ity, health, and other network properties found in 
typical Simple Network Management Protocol 
(SNMP) [2]. Management Information Bases (MIB) 
is available for use by the management system. To 
enable predictive management of applications, new 
MIBs will have to be defined that hold both current 
values as well as values expected to exist in the 
future.

 The AgentX [5] protocol begins to address the 
issue of independent SNMP agent developers 
dynamically and seamlessly interconnecting their 
agents into a single MIB under the control of a mas-
ter agent. AgentX specifies the protocol between the 
master and sub-agents allowing the sub-agents to 
connect to the master agent. The AgentX specifica-
tion complements this work-in-progress, namely, in-
line network management prediction. The in-line 
network management prediction specification pro-
vides the necessary interface between agent func-
tionality injected remotely via an Active Packet and 
dynamically linked' into a MIB. The agent code may 
enhance an existing MIB value by allowing it to 
return predicted values. Otherwise, coexistence with 
AgentX is SUGGESTED. The in-line network man-
agement prediction specification enables faster 
development of MIB modules with more dynamic 
algorithmic capability because Active and Program-
mable networks allow lower-level, secure, dynamic 
access to network devices. This has allowed injection 
of predictive capability into selected portions of 
existing MIBs and into selected portions of active or 
programmable network devices resulting in greater 
performance and fault tolerance.

Outline
This document proposes standards for the following 
aspects of in-line predictive management:

• SNMP Object Time Series Representation and 
Manipulation

• Common Algorithmic Description
• Multi-Party In-line Predictive Model Access and 

Control
• Common Framework for Injecting Models into 

the Network
• Model Interface with the Framework

Figure 152.  The Distributed Model Inside the Network. 
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 The high-level components of this proposed stan-
dard are shown in Figure 153. The Active Network 
Framework [10] is a work in progress. In-line Predic-
tive Management is the subject of this document. 
The Internet Protocol and SNMP are well-known.

Figure 153 shows the various ways in which in-line 
predictive management can be used in an active net-
work given an implementation in a particular execu-
tion environment. The in-line predictive 
management application runs as an active applica-
tion on an active node. The framework is indepen-
dent of the underlying architecture of the active 
network, which can take one of two forms. The pro-
tocol stack on the left shows a fully active network in 
which the Node Operating System runs one or more 
Execution Environments. Multiple active applica-
tions may execute in any Execution Environment. 
The protocol stack on the right shows the architec-
ture of an active network overlay over IP. Essentially, 
the overlay scheme uses the Active Network Encap-
sulation Protocol (ANEP) [7] as a conduit to use the 
underlying IP network. The predictive management 
application executes alongside the other active 
applications and interacts with any managed active 
applications to provide their future state. Since the 
predictive management application requires only 
the execution environment to run in, it is indepen-
dent of whether the active network is implemented 
as an overlay or it is available as a fully active net-
work.

 The next section provides basic definitions. Fol-
lowing that, the goals of this proposed standard are 

laid out. The remainder of the document develops 
into progressively more detail defining interopera-
bility among algorithmic in-line network manage-
ment prediction components. Specifically, predictive 
capability requires careful handling of the time 
dimension. Rather than change the SNMP standard, 
a tabular technique is suggested. Then, in order to 
simplify design of predictive management objects, 
an extension to Case Diagrams is suggested for 
review and comment. This is followed by the specifi-
cation of a distributed predictive framework. It is 
understood that multiple distributed predictive 
mechanisms exist, however, this framework is pre-
sented for comment and review because it contains 
all the necessary elements. Finally, the detailed inter-
face between the active or programmable code and 
IP standard interfaces is presented.

Definitions
The following acronyms and definitions are helpful 
in understanding the general concept of predictive 
network management.

Figure 153.  Relationship Among Underlying Assumptions 
about the Predictive Management Environment. 

In-line  Located within, or immediately adjacent to, the flow of network traffic.

Predictive Network 
Management

 The capability of reliably predicting network events or the state of the network at a time 
greater than wall-clock time.

 Fine-Grained Models  Small, light-weight, executable code modules that capture the behavior of a network or 
application component to enable predictive network management.

 Algorithmic Information  Information, in the form of algorithms contained inside executable code, as opposed to 
static, non-executable data. Depending upon the complexity of the information to be trans-
ferred, an algorithmic form, or an optimal tradeoff between algorithmic and non-algorith-
mic form can be extremely flexible and efficient.

Non-Algorithmic Infor-
mation

 Information that cannot be executed. Generally requires a highly structured protocol to 
transfer with well-defined code pre- installed at all points in route including source and 
destination.

Small-State  Information caches that can be created at network nodes, intended for use by executable 
components of the same application.
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 The following acronyms and definitions are use-
ful in understanding the details of the specific pre-

dictive network management framework described 
in this document.

Global-State  Information caches created at network nodes, intended to be used by executable compo-
nents of different applications.

 Multi-Party In-line Pre-
dictive Management 
Model

 An in-line predictive management model comprised of multiple in- line algorithmic models 
that are developed, installed, utilized, and administered by multiple domains.

 A (Anti-Toggle)  Used to indicate an anti-message. The anti-message is initiated by rollback and is used to 
keep the system within a specific range of prediction accuracy.

AA (Active Application)  An active network protocol or service that is injected into the network in the form of 
active packets. The active packets are executed within the EE.

Active Network  A network that allows executable code to be injected into the nodes of the network and 
allows the code to be executed at the nodes.

Active Packet  The executable code that is injected into the nodes of an active network.

Anti-Message  An exact duplicate of a virtual message except for that the Anti- toggle bit is set. An Anti-
message is used to annihilate an invalid virtual message. This is an implementation spe-
cific feature relevant to optimistic distributed simulation.

DP (Driving Process)  Generates virtual messages. Generally, the DP is implemented as an algorithm that sam-
ples network state and transforms the state into a prediction. The prediction is repre-
sented by a virtual message.

EE (Execution Environ-
ment)

 The active network execution environment. The environment that resides on active net-
work nodes that executes active packets.

 Lookahead  The difference between Wallclock and LVT. This value is the distance into the future for 
which predictions are made.

 LP (Logical Process)  An LP consists of the Physical Process and additional data structures and instructions 
which maintain message order and correct operation as a system executes ahead of real 
time

LVT (Local Virtual Time)  The LP contains a notion of time local to itself known as LVT. A node's LVT may differ from 
other nodes' LVT and Wallclock. LVT is a local, asynchronous notion of time.

M (Message)  The message portion of a Virtual Message is implementation specific. This proposed stan-
dard SUGGESTS that the message contents be opaque, however, an SNMP varbind, 
intended to represent future state, MAY be transported. Executable code may also be 
transported within the message contents.

NodeOS (Node Operat-
ing System)

 The active network Operating System. The supporting infrastructure on intermediate net-
works nodes that supports one or more execution environments.

PP (Physical Process)  A PP is an actual process. It usually refers the actual process being modeled, or whose 
state will be predicted.

 QS (Send Queue)  A queue used to hold copies of messages that have been sent by an LP. The messages in 
the QS may be sent as anti-messages if a rollback occurs.

Rollback  The process of adjusting the accuracy of predictive components due to packets arriving 
out-of-order or out-of-tolerance. Rollback is specific to optimistic distributed simulation 
techniques and is thus an implementation specific feature.

RT (Receive Time)  The time message value is predicted to be valid.
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Goals
The goals of this document are...

• Simplicity—This document attempts to describe 
the minimum necessary elements for in-line 
management prediction. Model developers 
should be able to inject models into the net-
work allowing SNMP Object value prediction. 
Such models should work seamlessly with other 
predictive models in the network. The goal is to 
minimize the burden on the model developer 
while also insuring model interoperability.

• Conformance—This document attempts con-
formance with existing standards when and 
where it is possible to do so. The concept is to 
facilitate a gradual transition to the active and 
programmable networking paradigm.

• In-line Algorithmically-Based Management—This 
document attempts to introduce the use of in-
line algorithmic management information.

B.3. A COMMON REPRESENTATION OF SNMP 
OBJECT TIME SERIES FOR IN-LINE 
NETWORK MANAGEMENT PREDICTION

SNMP, as currently defined, has a very limited 
notion of time associated with state information. 
The temporal semantics are expected to be applied 
to the state by the applications reading the informa-
tion. On the other hand, predictive management 
requires generation, handling and transport of 
information that understands the temporal charac-
teristics of the state, i.e. whether the information is 
current, future, or perhaps past information. In 
other words, capability for handling the time dimen-
sion of management information needs to be 
extended and standardized in some manner. In this 
section, we propose a mechanism for handling time 

issues in predictive management that require mini-
mal changes from the SNMP standard.

 A proposed standard technique for handling the 
time dimension in predictive state systems is to build 
the SNMP Object as a Table Object indexed by time. 
This is shown in the following excerpt from a Load 
Prediction MIB...
Figure 154.  MIB Structure for Handling Object Values with Pre-
dictive Capability. 

 In Figure 155, the result of an SNMP query of the 
relevant predictive MIB Object is displayed. Because 
the identifiers are suffixed by time, the object values 
are sorted temporally. If a client wishes to know the 
next predicted event on or before a given time, the 
query can be formulated as a GET-NEXT with the 
next predicted event time to be determined as the 
suffix. The GET-NEXT-RESPONSE will contain the 
next predicted event along with its time of occur-
rence. Otherwise, a value outside the table will be 
returned if no such predicted value yet exists.

This allows SNMP GET-NEXT operations from a 
client to locate an event nearest to the requested 
time as well as search in temporal order for next pre-
dicted events.

B.4. A COMMON ALGORITHMIC DESCRIPTION
SNMP, as currently defined, assumes that non-algo-
rithmic descriptive information will be generated, 
handled, or transported. Prediction requires model 
development and execution. This proposed stan-
dard SUGGESTS that models are to be small, low-
overhead, and fine-grained. Fine-grained refers to 
the fact that the models are locally constrained in 
time and space. In this section, we propose algorith-
mic descriptions of management models designed 
to encourage the understanding and use of in-line 
predictive management techniques.

RQ (Receive Queue)  A queue used in the algorithm to hold incoming messages to an LP. The messages are 
stored in the queue in order by receive time.

SQ (State Queue)  The SQ is used as a LP structure to hold saved state information for use in case of a roll-
back. The SQ is the cache into which pre-computed results are stored.

Tolerance A user-specified limit on the amount of prediction error allowed by an LP's prediction.

TR (Real Time)  The current time as a time-stamp within a virtual message.

TS (Send Time)  The LVT that a virtual message has been sent. This value is carried within the header of 
the message. The TS is used for canceling the effects of false messages.

VM (Virtual Message)  A message, or state, expected to exist in the future.

Wallclock  The current time.

128



 

Case Diagrams[4] provide a well-known represen-
tation for the relation of management information 
to information flow as shown in Figure 156. The 

details of Case Diagrams will not be discussed here 
(see the previous reference for more information). 
The purpose of this section is to illustrate an 
enhancement to the diagram that allows algorithmic 

information to be specified, particularly for multi-
party predictive model interaction.

An excerpt of an SNMP Case Diagram serves to 
provide a flavor of its current format. The diagram 
below shows packets arriving from a lower network 
layer. Some packets are determined to have encod-
ing errors and are discarded. The remaining packets 
flow to the upper layer.

For the purposes of in-line predictive manage-
ment, models SHOULD be specified and injected 
into the system. These models MAY coexist with the 
current SNMP management model supplementing 
the information with predictive values. This is 
denoted by adding algorithmic model information 
to the Case Diagram. A'+' sign after the name of an

Object Identifier identifies the object as one that 
can return future values. The model used to predict 
the future information is written within braces near 
the Object identifier and incorporates the name of 
the SNMP object identifiers. This document SUG-
GESTS using a common syntax for the notation such 
as that used for code blocks by the C Programming 
Language block constructs, Java Programming Lan-
guage blocks, or the notation used by any number of 
other languages. Standardization of the model syn-
tax is outside the scope of interest for this docu-
ment. All functions MUST be defined. Operating 
system function calls MAY NOT be used. The salient 
point is that the algorithm must be clearly and con-
cisely defined. The algorithm must also be a faithful 
representation of the actual predictive model 
injected into the system. As shown in 
Figure 157,'encodingErrors' is predictively 

enhanced to be 10% of “'inPackets' for future values. 
The predictive algorithm MUST run on the network 
node and MUST be immediately available as input 
for other predictively enhanced objects. The pre-
dicted value MUST be available as a response to 
SNMP queries for future state information, or for 
transfer to other nodes via virtual messages, 
explained later in this document. SNMP Objects 
that are enhanced with predictive capability are 

Figure 156.  An Example 
Case Diagram. 

Figure 157.  A Sample Al-
gorithmic Description. 
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assumed to always have the actual monitored value 
at Wallclock time.

If this were a wireless network, a more realistic 
algorithmic model would likely incorporate channel 
quality SNMP Objects into the “encodingErrors” 
prediction algorithm. In many cases, the algorithmic 
portion of the Case Diagram will involve SNMP 
objects from other nodes. Syntax should include the 
ability to identify general topological information in 
the description of external objects. For example, 
“inPackets[adj]” or “inPackets[edge]” should indi-
cate immediately adjacent nodes or nodes at the 
topological edge of the network.

In the example shown in Figure 158, a'packets-

Forwarded' object has predictive capability denoted 
by the'+' symbol. The predictive capability comes 
from an algorithmic model specified within the 
braces next to the object name. In this case, the pre-
diction will be the value of the “driverForwarded” 
object from the node closest to the edge of the net-
work.

In Figure 159,which is an SNMP diagram of the 
edge node, the “driverForwarded” object is pre-
dicted by executing the algorithm in braces. This 

algorithm predicts “driverForwarded” packets to be 
a linear approximation of a sample of “appPackets”. 
The sample is “epsilon” time units apart and the pre-
diction is “delta” time units into the future.

B.5. MULTI-PARTY MODEL INTERACTION
Multiple developers and administrators of in-line 
predictive algorithmic models will require mecha-
nisms to ensure correct understanding and opera-
tion of each others' models and intentions.

Model Registration
It may be necessary to register predictive models. 
Registration is often an IANA function [6]. Algorith-
mic model registration needs to be handled more 
dynamically than AgentX models. Algorithmic mod-
els, while not necessary doing so, have the capability 
to install/deinstall at rapid rates. The in-line model 
installation and deinstallation proposed standard is 
described in Section 7.

Model Interaction
Multiple models residing on a node need to inter-
operate with one another. This document proposes 
to use SNMP Object Identifiers as much as possible 

Figure 155.  Outp
ut from a Query of 
the MIB Struc-
ture for Handling 
Object Values 
with Predictive 
Capability. 

Figure 158.  An Al-
gorithmic Descrip-
tion Using State 
Generated from An-
other Node De-
scribed in 
Figure 159. 

Figure 159.  A Node Generating State Information Used by the 
Node in Figure 158. 
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for communication of state information among 
models. In addition, multiple Active Application 
models may choose to communicate with one 
another via global state.

Co-existence with Legacy SNMP
Querying an IP addressable node for SNMP objects 
that are predictively enhanced should appear trans-
parent to the person polling the node. Multiple 
ports, etc. should not be required. A program 
injected into a node that serves to extend an SNMP 
MIB MAY do so using global state. A global state 
cache holds the SNMP object values and responds 
via an internal port to connect with a master SNMP 
agent for the node.

B.6. A COMMON PREDICTIVE FRAMEWORK
This section specifies an algorithmic predictive man-
agement framework. The framework allows details 
of distributed simulation, such as time management, 
state saving, and model development to be imple-
mentation dependent while ensuring in-line inter-
operability both with, and within, the network. The 
general predictive network management architec-
ture MUST contain at least one Driving Processes 
(DP), MAY contain Logical Processes (LP), and 
MUST use Virtual Messages (VM).

 Figure 160 illustrates network nodes containing 

DPs and LPs. The annotation under nodes AH-1 and 
AN-1 are an SNMP Object Identifier. SNMP Object 
Identifier'oid_1' represents state of node AH-1. The 
predictively enhanced SNMP Object Identifier, 
“oid+” on node AN-1 is a function of'oid_1'. Note 
that “f()” is shown as an arbitrary function in the fig-
ure, but MUST be well-defined in practice.

The framework makes a distinction between a 
Physical Process and a Logical Process. A Physical 
Process is nothing more than an executable task 
defined by program code i.e. it is the implementa-
tion of a particular model or a hardware component 
or a direct connection to a hardware component 

representing a device. An example of a Physical Pro-
cess is the packet forwarding process on a router. 
Each Physical Process MUST be encapsulated within 
a Logical Process, labeled LP in Figure 160. A Logi-
cal Process consists of a Physical Process, or a model 
of the Physical Process and additional implementa-
tion specific data structures and instructions to 
maintain message order and correct operation as 
the system executes ahead of

current (or Wallclock) time as illustrated in 
greater detail in Figure 160. The details of the DP 
and LP structure and operation are implementation 
specific, while the inter-operation of the DP/LP sys-
tem must be specified. The LP architecture is 
abstracted in Figure 161. The flow of messages 

through the LP is shown by the arrows entering 
from the left side of the figure. The in-line predic-
tive framework components are shown in 
Figure 160, where AH-1 and AN-1 are Active Host 1 
and Active Node 1 respectively. In this context, 
active hosts are nodes that can inject new packets 
into the network while active nodes are nodes that 
behave as intermediate hops in a network.

  The Logical Process MUST handle time manage-
ment for the model. The Logical Process and the 
model that it implements MAY be implemented  in 
any manner, however, they must be capable of inter-
operating. The  framework MUST be capable of sup-
porting both conservative and optimistic time man-
agement within the network. Conservative time 
management REQUIRES that the model block when 
messages MAY be  received out-of-order while opti-
mistic time management MAY allow model process-
ing to continue, even when messages are received 
out-of- order. However, additional implementation 
specific mechanisms MAY be  used to account for 
out-of-order messages. Such mechanisms MAY be  

Figure 160.  Framework Entity Types. 

Figure 161.  A High-level View of the Logical Process Frame-
work Component within an Active Application. 
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embedded within the Logical Process and this speci-
fication does not attempt to standardize them.

Virtual input messages directed to a Logical Pro-
cess MUST be received by the Logical Process, 
passed to the model, and processed. Virtual output 
messages MAY be generated as a result.

 Virtual messages contain the following fields:
• Send Time (TS) which MUST contain the LVT 

(local simulation time) at which the message 
was sent

• Receive Time (TR) which MUST denote the 
time the message is expected to exist in the 
future

• MAY contain an (optional) Anti-toggle (A) bit 
for out-of-order message handling purposes 
such as message cancellation and rollback

• MUST contain the message content itself (M) 
which is model specific

  Thus, a Virtual Message (VM) MUST have the 
following structure...

These in-line predictive messages, or virtual mes-
sages, that contain  invalid fields because the trans-
mitting Logical Processes used an  incompatible 
time management technique MUST be dropped. 
However, it  is SUGGESTED that a count of such 
packets be maintained in a general in-line predictive 
management framework MIB. The Receive Time 
field  MUST be filled with the time that this message 
is predicted to be  valid at the destination Logical 
Process. The Send Time field MUST be filled with 
the time that this message was sent by the originat-
ing

Logical Process. The Anti-Toggle (A) field MUST 
be used for creating  an anti-message to remove the 
effects of false messages as described  later. A mes-
sage MUST also contain a field for the current Real 
Time  (RT). If a message arrives at a Logical Process 
out-of-order or with invalid information, that is, out 

of a pre-specified tolerance for  prediction accuracy, 
it is called a false message. The method for handling 
false messages is implementation specific. The 
Receive Queue, shown in Figure 163, maintains 

newly arriving messages in order by Receive Time 
(TR). The implementation of the Receive Queue is  
implementation specific.

  The Driving and Logical Processes MUST com-
municate via virtual messages as shown in 
Figure 164. The Driving Process MAY generate pre-
dictions based upon SNMP queries of other layers 
on the local node. The Logical Process MAY check 
its prediction accuracy via SNMP queries of other 
layers on its local node.

The in-line predictive framework MAY allow for 
prediction refinement  and correction by communi-
cating with the actual component whose state is to 
be predicted via an SNMP query. The asynchronous 
prediction mechanism has the following architec-
ture for Logical Process (Figure 163).

All of the Logical Process queues and caches MAY 
reside in an active node's Small-State. Small-State is a 
persistent memory cache left behind by an active 
packet that is available to trailing active packets that 
have the proper access rights. Typically, any type of 
information can be stored in Small-State.

 The Receive Queue MAY maintain active virtual 
message ordering and scheduling. All active packets 

Figure 162.  An In-line Management Prediction Virtual Mes-
sage. 

Figure 163.  A Logical Process Implementation and Interface. 

Figure 164.  Facility for Checking Accuracy with Actual Net-
work SNMP Objects in the In-line Predictive Management 
Framework. 
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MUST be encapsulated inside Active Packets follow-
ing the Active Network Encapsulation Protocol [7] 
format. Once a virtual message leaves the Receive 
Queue, the virtual time of the Logical Process, 
known as Local Virtual Time, MUST be updated to 
the value of the Receive Time from the departing 
virtual message. Virtual messages MUST originate 
from Driving Processes, shown in Figure 160 that 
predict future events and inject them into the system 
as virtual messages. The development of a Driving 
Process and Logical Process are dependent upon 
the model used to enhance the desired state of the 
system with predictive capability. Logical Processes 
MUST only operate upon the the arrival of virtual 
input messages and MUST NEVER spontaneously 
generate virtual messages.

 Following the arrows across Figure 163, virtual 
messages enter eitherthe Physical Process. The state 
of the Logical Process is periodically saved in the 
State Queue (SQ) shown as the State Cache in 
Figure 163. State Queue values are used to restore 
the Logical Process to a known safe state when false 
messages are received. State values are continuously 
compared with actual values from the Physical Pro-
cess to check for prediction accuracy, which in the 
case of load prediction is the number and arrival 
times of predicted and actual packets received. If the 
prediction error exceeds a specified tolerance, a 
rollback MAY occur.

 An important part of the architecture for net-
work management is the fact that the State Queue 
within the in-line management prediction architec-
ture is the node's Management Information Base. 
The State Queue values are the SNMP Management 
Information Base Object values; but unlike legacy 
SNMP values, these values are expected to occur in 
the future. The State Queue operation is implemen-
tation dependent, however, it holds the predicted 
SNMP Objects, is SUGGESTED to be implemented 
in small-state, and MUST use the interface specified 
in Section 7.2 to respond to SNMP queries. The cur-
rent version of SNMP has no mechanism to indicate 
that a managed object is reporting its future state; 
currently all results are reported with a timestamp 
that contains the current time. In working on pre-
dictive active network management prediction there 
is a need for managed entities to report their state 
information at times in the future. These times are 
unknown to the requester. A simple means to 
request and respond with future time information is 
to append the future time to all Management Infor-

mation Base Object Identifiers that are predicted. 
This requires making these objects members of a 
Management Information Base table indexed by 
predicted time as discussed in Section 2. This can be 
seen in the load Prediction Table shown in 
Figure 154. Thus a Simple Network Management 
Protocol client, who does not know the exact time of 
the next predicted value, can issue a get- next com-
mand appending the current time to the known 
object identifier. The managed object responds with 
the requested object valid at the closest future time. 
The figure illustrates an SNMP request and the cor-
responding response.

 Future times are the LVT of the Logical Process 
running on a particular node. As Wallclock 
approaches a particular future time, predicted val-
ues MAY be adjusted, allowing the prediction to 
become more accurate. The table of future values 
MAY be maintained within a sliding Lookahead win-
dow, so that old values are removed and the predic-
tion does exceed a given future time. Continuing 
along the arrows in Figure 161, any virtual messages 
that are generated as a result of the Physical Process 
or model computation proceed to the Send Queue 
(QS).

 The Send Queue is implementation dependent, 
however, it MAY maintain copies of virtual messages 
to be transmitted in order of their send times. The 
Send Queue is required for the generation of anti- 
messages during rollback. Anti-Messages annihilate 
corresponding virtual messages when they meet to 
correct for previously sent false messages. Annihila-
tion is simply the removal of both the actual and the 
anti-message. Where the annihilation occurs is 
implementation specific and left to the implemen-
tor. After leaving the Send Queue, virtual messages 
travel to their destination Logical Process. Further 
details on the optimistic synchronization mechanism 
are implementation dependent and outside the 
scope of this work in progress.

B.7. SUMMARY OF IN-LINE PREDICTION 
REQUIREMENTS

An in-line management prediction model developer 
MUST implement at least one Driving Processing 
and MAY implement a Logical Process using the 
same time management technique. The model 
developer MAY include an SNMP client within the 
model in order to query the modeled component in 
order to improve prediction accuracy. The model 
developer's Driving Process MUST generate virtual 
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messages. The Logical Process MUST receive and 
process those messages. The Logical Process MAY 
respond to virtual messages by generating virtual 
message(s). The Logical Process MAY use active net-
work node Small- state to hold a time series of the 
SNMP Object Id whose value is being continuously 
predicted. The interface to the SNMP MIB small- 
state is specified in the following section.

B.8. DETAILS OF THE ACTIVE NETWORK 
INTERFACE

The general active network architectural framework, 
without any specific network management paradigm 
implementation, is shown in Figure 165.

In-line network management prediction requires 
a general active network framework that supports 
active applications to be injected into the proper 
execution environments. The in-line management 
prediction framework enforces certain minimal 
requirements on the execution environment, which 
are listed below.

Information Caches
The execution environment MUST provide an infor-
mation cache called 'Small State' as defined in Sec-
tion 1.3 to enable information exchange between 
active packets, defined in Section 1.3. The execution 
environment MAY also provide an information 
cache called 'Global State', defined in Section 1.3, to 
enable the in-line management prediction frame-
work to communicate with a predictively managed 
active application to query its current state. The EE 
MUST provide an API to be able to store and query 
both 'Small State' and also to 'Global State', if it is 
implemented. The EE SHOULD provide appropri-
ate access control mechanisms to both 'Small State' 
and also to 'Global State', if it is implemented.

Interface to SNMP
The execution environment MUST provide an inter-
face that enables both the in-line management pre-
diction values and the values of the actual 
component being managed to publish their state to 
an SNMP MIB. This enables the in-line management 

prediction framework to store the predicted state in 
a well-known format and also enables legacy SNMP 
tools to query the predicted state using SNMP opera-
tions. Additionally, the managed application is also 
able to update its current state using SNMP, which 
the Logical Process will be able to query. In a partic-
ular implementation of such an interface, a generic 
SNMP agent coded as an active application MAY be 
injected into the active nodes. The agent creates a 
'Global State' on the active node with a well-known 
name. The agent reads information coded in a 
known format that has been written to the 'Global 
State' and publishes it to the MIB. Any active applica-
tion that wishes to advertise its state uses an interface 
that enables it to store its information in the well-
known 'Global State' in the given format.

 The format of the messages that are posted 
between the SNMP agent and an active application 
are shown in Figure 166.

The SNMP Agent and the active application MAY 
use special interfaces to implement messaging 
between them. A Message Packet, whose format is 
shown in Figure 166, is the basic unit of inter-appli-
cation communication. Each message consists of a 
message type. The type SHOULD assume one of the 
following values:

• MSG_ADDINT: to add a new MIB Object of 
type SNMP INTEGER

• MSG_UPDATEINT: to update the value of an 
MIB Object of type SNMP INTEGER

• MSG_GETINT: to get the value of an MIB 
Object of type SNMP INTEGER

• MSG_ADDLONG: to add a new MIB Object of 
type SNMP LONG

• MSG_UPDATELONG: to update the value of 
an MIB Object of type SNMP LONG

• MSG_GETLONG: to get the value of an MIB 
Object of type SNMP LONG

• MSG_ADDSTRING: to add a new MIB Object 
of type SNMP STRING

• MSG_GETSTRING: to get the value of an MIB 
Object of type SNMP STRING   

• MSG_UPDATESTRING: to update the value of 
an MIB Object of type SNMP STRING

Figure 165.  The Ac-
tive Network 
Framework. 

Figure 166.  Message Packet. 
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   The active application SHOULD send a mes-
sage of the valid message   type to the SNMP agent to 
perform the required operation.  On receipt   of a 
message, the SNMP agent SHOULD attempt to per-
form the requested   operation.  It MUST then 
respond with an acknowledgment message in a for-
mat shown in Figure 167.

    The acknowledgment message has the follow-
ing format.

The status code MUST have one of the following 
values:

• OK: to indicate successful operation
• ERR_DUPENTRY: if for a MSG_ADD opera-

tion, an Object identifier of given name already 
exists

• ERR_NOSUCHID: if for a MSG_UPDATE oper-
ation, an Object identifier of given name does 
not exist.

   The Status message MAY be any descriptive 
string explaining the nature of the failure or 
SHOULD be “Success” for a successful operation.

B.9. IMPLEMENTATION
Models injected into the network allow network state 
to be predicted and efficiently propagated through-
out the active network enabling the network to oper-
ate simultaneously in real time as well as project the 
future state of the network. Network state informa-
tion, such as   load, capacity, security, mobility, faults, 
and other state   information with supporting mod-
els, is automatically available for use by the manage-
ment system with current values and with values   
expected to exist in the future. In the current ver-
sion, sample load and processor usage prediction 
applications have been experimentally validated 
using the Atropos Toolkit [11]. The toolkit's distrib-
uted simulation infrastructure takes advantage of 
parallel processing within the network, because com-
putation occurs concurrently at all participating 
active nodes. The network being emulated can be 
queried in real time to verify the prediction accu-
racy. Measures such as rollbacks are taken to keep 
the simulation in line with actual performance.

Predictive In-line Management Information 
Base
Further details on the in-line network management 
prediction concept can be found in Active Networks 
and Active Network Management [1]. The SNMP 
MIB for the in-line predictive management system 
described in this proposed standard follows in the 
next section.
Figure 168.  The Atropos MIB. (Printouts appear on the 
following pages.)

B.10.SECURITY CONSIDERATIONS
Clearly, the power and flexibility to increase perfor-
mance via the ability to inject algorithmic informa-
tion also has security implications. Fundamental 
active network framework security implications will 
be discussed in [10].
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Glossary and Definitions
Algorithmic Sufficient Statis-
tic 

The shortest program S* that computes a finite set S containing d on a universal com-
puter, such that the two-part description consisting of S_ and log|S| is as short as the 
shortest single program that computes d without input [172].

Complexity Theory A term used to describe a breadth of disciplines engaged in the study of what makes 
something hard and what makes something easy. The sense in which something is 
hard or easy separates the varieties of complexity theory, Kolmogorov complexity 
considers minimal descriptions less complex than long descriptions. Computational 
complexity, on the other hand, considers a problem hard if it requires a long time or a 
lot of space on a Turing machine in order to be solved [211].

Computational Complexity  For input of length n, if Turing machine T makes at most t(n) moves before it stop then 
T is said to run in time t(n) and have time complexity t(n). If T uses at most s(n) tape 
cells in the same computation it is said to use s(n) space and have space complexity 
s(n) [211].

Computational Mechanics Refers to the structure of a process, in a class of complexity theory sometimes called 
“structural complexity theory,” of which computational mechanics is the most devel-
oped [212].

Computational Complexity The amount of time or memory required to solve a given problem. [211].

Entropy Rate With respect to a stochastic process, the entropy rate is the rate with which the 
entropy of a sequence of n random variables grows within [118].

Inductive Inference The process of reaching a general conclusion from specific examples, including con-
clusions about examples not specified. Generalization, or reasoning from the specific 
to the General Case. [213]

Information Assurance Information operations (IO) that protect and defend information and information sys-
tems (IS) by ensuring their availability, integrity, authentication, confidentiality, and 
non-repudiation. This includes providing for restoration of information systems by 
incorporating protection, detection, and reaction capabilities. Alternatively, Informa-
tion operations (IO) that protects and defend information and information systems (IS) 
by ensuring their availability, integrity, authentication, confidentiality, and non-repudi-
ation. This includes providing for restoration of information systems by incorporating 
protection, detection, and reaction capabilities. [214]

Kolmogorov Complexity The length of the smallest program capable of generating a given string without input 
on a Universal Turing Machine. Sometimes referred to as descriptive complexity or 
Kolmgorov-Chaitin complexity [10].

Minimum Description Length 
(MDL)

 Criteria for inductive inference [215].

Minimum Message Length 
(MML) 

Criteria for inductive inference [14].

Minimum Sufficient Statistic A statistic that is a function of all other statistics and contains no additional irrelevant 
information [118].

Prefix Code A code in which no code word is the prefix of another codeword such that the it can 
be instantaneously decoded [118].

Prefix Free Program Set A set of programs such that no program leading to a halting computation is the prefix 
of another program [10].
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Partial Recursive Functions The set of functions mapping strings in the set {0, 1}* to the finite set {0,1}* or 
infinite set {0, 1}∞ that is computable by a Turing Machine [10].

Recursive A Turing machine that implements a function mapping an input to output and halting 
on all inputs is known as recursive. All recursive functions are computable [10].

Sophistication The minimal length of a total recursive function that leads to an optimal two-part code 
for a given object (binary string). One part is the model that comprises the structure or 
patterns in the string. The second part consists of random data that identifies the spe-
cific object within the set defined by the model. The minimum sufficient statistic in the 
recursive model class [181].

Statistic A function of a sample of data [118].

Sufficient Statistic A statistic of a distribution that contains all the information in a sample about the dis-
tribution [118].

Two-part Codes/ Two-part 
Description 

A description of a binary string object consisting of two separate parts. The first part 
consists of a description of a model or set comprising the compressible parts of the 
object. The second part consists of the enumeration of the object given the first part 
and can be considered a description of the random aspects of the object [181].

Typical Element of a Set An element of a set that can be described most succinctly by an index from an enu-
meration of all elements of the set. If first describing a sub-set and then enumerating 
the element can more succinctly describe an element of a set then it is not a typical 
element [172].
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